INCENTIVES AND GENERAL
WELFARE FUNCTIONS IN THE
OFF-LINE CLUSTER SCHEDULING
PROBLEM

Orna Agmon

INCENTIVES AND GENERAL
WELFARE FUNCTIONS IN THE
OFF-LINE CLUSTER SCHEDULING
PROBLEM

Research Thesis

Submitted in Partial Fulfillment of the Requirements
For the Degree of Master of Science

in Applied Mathematics

Orna Agmon

Submitted to the Senate of the Technion — Israel Institute of Technology
ADAR 15763 HAIFA FEBRUARY 2003

The Research Thesis Was Done Under The Supervision of Dr. Rann Smorodinsky in In the

Interdepartmental Program of Applied Mathematics

Acknowledgment

English Thanks

This Thesis is dedicated to the dedication of deduction.

Contents

Abstract X
List of Symbols xii
List of Operators XV
1 Introduction 1
1.1 The Scope of This Work 2

2 Related Work 4
2.1 Off-Line Scheduling games L 4
2.1.1 Nisan and Ronen 4

2.1.2 Van Ackere 4

2.1.3 Wellman, Walsh, Wurman and MackKie-Mason 5

2.2 Queuing Games e 5
2.2 1 Naor e 5

2.2.2 Altman and Shimkin oL 6

2.2.3 Van Mieghem 6

2.3 Variations On The Cluster Scheduling Problem 6
2.3.1 Migration 6

2.3.2 Off-Line Scheduling 7

2.3.3 On-Line Scheduling L 7

2.3.4 Backfilling 7

2.3.5 On-Line Schedulers Which Involve Monetary Transfers 8

vi

2.3.6

3 The model

Distributed Decisions

3.1 The Primitives
3.1.1 Allocations
3.1.2 Efficiency
3.2 Job Control Tools
3.2.1 Imtuition For Job Control Tools
3.2.2 Formal Definitions for Job Control Tools
3.3 Utilities o e
3.3.1 Agents’ Utilities oL
3.3.2 Social Welfare
3.4 Motivating Example: A Straightforward Implementation
3.4.1 Example: The Need for Information
3.5 The mechanism e
3.5.1 Prices
3.5.2 A Static Allocation
3.5.3 Job Control Triggers
3.5.4 The Game
3.6 Strategies L e

4 Desired Mechanisms

4.1 Incentive Compatibility (IC)
4.2 Budget Considerations
4.3 Safety Margins e
4.4 Fixed Prices L
4.5 Justness . ..o
4.6 Scalability- Limitations on Input L oL o
4.7 Final Social Welfare

vii

10
10
11
12
14
15
16
21
21
21
26
27
28
28
28
28
30
31

5 A Special Case of a Social Welfare Function
5.1 The Vickrey-Clarke-Groves Mechanism
5.1.1 Imtroduction
5.1.2 A VCG Mechanism For Off-Line Cluster Scheduling
5.2 Hypotheses and Counter Examples
5.2.1 The Light VCG Mechanism: Counter Example 1
5.2.2 The Light VCG Mechanism: Counter Example 2
5.3 VCG and Job control Tools L
5.3.1 The Harsh Punishment Mechanism
5.3.2 Other Implementations of the gZ Function
5.4 Are Monetary Transfers Really Needed?

A General Social Welfare Function

6.1 introduction
6.2 The Extended VCG (EVCG) Mechanism
6.3 An Implementation of a General Social Welfare Function in Ex-Post Equilibrium . .

6.4 An Implementation of a General Social Welfare Function in Dominant Strategies . .

Mechanism Qualities: Discussion

7.1 Limitations on Input Lo
7.2 Budget Considerations
7.3 Safety Margins e
T4 JUSENESS e e
7.5 Individual Rationality
7.6 Final Social Welfare
7.7 Complexity and Off-Line Calculations

7.8 Practical Limitations on the Implementation

8 Summary

References

viii

38
38
38
39
40
40
43
43
43
44
o1

53
33
54
o7
o8

60
60
61
63
63
64
67
68
69

71

73

Hebrew Abstract

Abstract

Several agents wish to execute one job each on a cluster- several computers which are a resource
owned by an institution. The job’s length is a secret known to the agent alone, and the agent’s
utility is the negation of the time in which she gets the output of the job. The institution would like
to maximize a social welfare function over the agents’ utilities by scheduling the jobs on the various
computers. For example, the institution may wish to minimize the sum of times in which the agents
get the output from their jobs, or to minimize the output time of the last job to come. The problem
is that in order to act optimally, the institute must know the true lengths - an information it does
not posses.

We construct mechanisms in which the agents prefer to tell the institution the real length of their
jobs, while the institution maximizes a general social welfare function. Those mechanisms involve
both monetary transfers before the execution, and implementation of job control tools during the
execution. A job control tool is a certain algorithm for altering the initial allocation. Examples for

such tools are postponing a part of the job for later, or lowering the share it gets of the CPU.

xi

List of Symbols

Symbol | Meaning
OLCS | Off-Line Cluster Scheduling
CPU Central Processing Unit
N number of agents, also number of jobs
M number of CPUs in the cluster
M a cluster of M CPUs
) vector of real job lengths
] job type space
Ry positive real numbers
c vector of processing power
A allocation
N set of jobs of size N
N set of jobs which are executed on CPU m under allocation A
XA(t) | work function of job n under allocation A at time ¢
XAm(t) | usage of CPU m under allocation A at time ¢
A the set of all allocations
FUL(#) | the set of allocations which fulfill §
T output times vector
BA beginning times vector under allocation A
EA ending times vector under allocation A
Q status
EFF the set of all of the efficient allocations
EFF (5) the efficient allocations which fulfill §

xii

Symbol

Meaning

b
Q)
Q finat, Q(00)
Q(0), Qstatic
L

Qm

s/

trirstsplit
Un,
Vi
P(b)

vector of broadcasted declarations

dynamic status at time ¢

final status

static status

vector of termination signals

the status of CPU m

a time in which the CPU is assured to be vacant,

which is at least as large as the original POST parameter

the first time a split job on the CPU resumes execution

utility of agent n

agent n’s valuation for the execution of her job

vector of price functions, which the agents pay the institution
social welfare function

the set of regular social welfare functions

the set of all the jobs on CPU m which are not a segment in time of value 1
the set of jobs on CPU m which are active while job n is active
an ordinal number of job k within set ./\7;,‘:,I

the amount of CPU time job i(k) got while job n was active

percentage in the RN operator

time in the POST operator

job n’s dependents

job n’s dependency number

an allocation which is an outcome of

a mechanism, when the declarations are & and the real types are i/
strategy

range of real lengths

the social welfare function which is the sum of utilities

utility of agent n in other environments from the allocation itself

xiii

Operator

Meaning

\iele;
ES-

DA®b,0-)
EVCG
Haigy
Haps
makespan'
ms!
lexicalmaz
EmA

N

Vickrey Clarke Groves

time in which job n is supposed to end,
according to the status prior to that time

a mechanism

the vector of output times

as a function of the declarations and the types
the vector of utilities

as a function of the declarations and the types
the strategies of all agents except agent n

the declarations of all agents except agent n
the types of all agents except agent n

the distribution function of the length of job n
T in a system which optimizes gZ

Uina system which optimizes g

o0 in a system which optimizes g

the jobs on the same CPU as job n, excluding job n
the dynamic status

at the time in which job k begins its execution

the possible gained time

Extended Vickrey Clarke Groves

a limit for the downward lie, according to equation 5.13
a limit for the real type, according to equation 5.14

the makespan function of order [, according to definition 6.1
the makespan set of order [according to definition 6.2
the lexical max function according to definition 6.2

the ending time of CPU m under allocation A

the subset of A/ which chose to stay for the second round

Xiv

List of Operators

Operator Meaning
ES,(r) operator “extended stay” for job n of time amount r
RP,(s,1) operator “reduced power” for job n to percentage s from time r
GAP,(r,s) operator “gap” for job n from time r until time s
RN, (s,7,0,) | operator “renice” for job n

from time r to a percentage s until it performs a total work of 6,
CLOSE,,(r,s) | operator “close gap” in computer m from time 7 until time s
POST,(r,s,0,) | operator “postpone” for job n from time r to time s

and let it continue until it performs a total work of 6,

EARLY, early release of job n

XV

xvi

Chapter 1

Introduction

Let us examine an institution oriented at producing HPC (High Performance Computing) calcula-
tions. HPC calculations are characterized by long processing time, and no interactivity'. The people
who send these computations are either workers of that institution, or outsiders who get the privilege
of using the institution’s resources. Those resources, which used to be composed of a mainframe?
computer, are composed nowadays of a cluster of commodity personal computers (PCs): several
PCs, with a common controlling center, which supply together the necessary computing power.

Each worker has one job to submit to the cluster, which may be composed of computers of
varying strength. The cluster’s qualities are known to the person submitting the jobs, but each job’s
length is the private information of the person who submits it. Though in the world of computer
science, those workers would be referred to as “users”, we shall use the term “agents”, taken from
game theory.

The agent’s interest is that the job be finished as soon as possible: her utility from the completion
of the job increases the sooner the job is finished. On the other hand, the institute has other interests,
some of which may collide with those of the single agents. This institutional interest is often referred
to as a social welfare function.

One example of an objective of the institution may be minimizing the sum of times in which all

jobs end. Another would be minimizing the make-span?® of the jobs.

1Some HPC calculations require a certain amount of interactivity, with long gaps between the interactive modes.
One may look at them as several sequentially dependent calculations.

2Mainframe: a single, very strong, machine, which is usually shared among several uses at a time.

3Make-span- the time difference between the beginning of the first job, and the ending of the last. Also see

The classic problem that computer scientists and operations research scholars have treated is the
computational difficulty of solving the optimization problem. For example, Du and Leung [13] prove
that the off-line* scheduling problem, when the lengths of the jobs are known, is NP-hard. Others
give procedures for reaching good results on specific cases. For example, Root [30] gives a procedure
for off-line scheduling of multiple jobs on parallel machines with a common due date. Azizoglu and
Kirca [6] give a heuristic algorithm for a similar problem, with different due dates.

However, this study looks at the off-line cluster scheduling problem from a different perspective,
which results from the potential collision of interests among agents and between the agents and the

institution.

1.1 The Scope of This Work

In this work, we assume the institution is capable of choosing an optimal schedule (a schedule which
optimizes the social welfare function), given the exact lengths of the jobs. In subsection 7.7 we
discuss the circumstances in which this assumption is valid.

We concentrate on designing a mechanism in which an optimal course of action for the agents is
to reveal the length of their jobs, while the institution maximizes a general social welfare function.
Thus we guarantee the maximization of the social welfare function. We design this mechanism using
monetary transfers between the institution and the agents, and job control tools which change the
allocation dynamically in a limited manner.

We limit the discussion to off-line scheduling, which means all the jobs® are available at time
zero. Furthermore, we assume that the institution is able to control the execution of the jobs
completely. The only actions on behalf of the agent are reporting the (not necessarily true) length
of the job, and supplying the job.

The rest of this work is constructed as follows: In chapter 2 we refer to related work. In chapter 3

we describe the model, define the terms of allocation and job control tools, and the mechanism

definition 6.1 for makespan® and in Abdekhodaee and Wirth [1].

4off-line scheduling means the lengths of the jobs are all known at time 0. This comes as opposed to on-line
scheduling, which means that jobs may be submitted while other jobs are being executed, as part of an on-going
process. Different scheduling methods are discussed in section 2.

5for the current batch in which we deal. New jobs which are submitted, are performed in the next batch. We assume
no interaction between those batches, i.e. jobs from a prior batch are not processed anymore after the processing of
the current batch has begun.

derived from them. In chapter 4 we list several characteristics of desired mechanisms. In chapter 5
we implement a special social welfare function using certain combinations of job control tools and
monetary transfers. In chapter 6 we extend the mechanism to implement a general social welfare
function. In chapter 7 we discuss the quality of the proposed off-line cluster scheduling mechanisms,

and we conclude in chapter 8.

Chapter 2

Related Work

2.1 Off-Line Scheduling games

2.1.1 Nisan and Ronen

Nisan and Ronen [28] present a problem where the agents are the CPU owners, whose interest is to
do as little work as possible. The mechanism is required to allocate certain tasks to those agents.
The CPUs are not related.

The authors propose various approaches for solving the problem of minimizing the makespan.
They approximate the makespan welfare function using the minimal work welfare function, prove it
is a tight bound and use randomness to improve that approximation.

They insert monetary payments after the execution, thus enabling the institution to verify how
long indeed the jobs took on that specific CPU. Since this mechanism requires an exponential
computation time, they provide an approximation for a sub-case of the problem: Nisan and Ronen
also prove that for bounded types, their mechanism approximates the optimal value for the social

welfare function, even if the institution only approximated the optimal allocation.

2.1.2 Van Ackere

Van Ackere [2] presents a game between an institution (which is also the scheduler) and any one

agent. She deals with the problem of scheduling operation rooms in a hospital, when the real length

of operations is not known. The game she describes is held between the institution and any of the
agents, who are the surgeons. The surgeon may arrive to the surgery later than scheduled, partly
due to intentionally being late, and partly due to uncontrolled reasons. The surgeon’s secret is the
time in which he intended to arrive. The institution’s utility decreases the later the surgeon is,
relative to the time in which the operating room is ready. The institution tries to determine the
proper time to schedule the operation.

In another work, Van Ackere [3] analyzes the strategies of a client and a dentist in two scheduling
systems. In the first, the dentist performs the diagnosis and the treatment in one sitting. In the
second, the dentist schedules two appointments, one for each of the tasks. While the diagnosis is
of known duration, the treatment’s length may vary, and it depends on the diagnosis. Van Ackere
shows that there exist combinations of costs to the agents, a choice of a scheduling system, and a
choice of arrival times, such that both agents would be better off in another combination (which is

not in equilibrium).

2.1.3 Wellman, Walsh, Wurman and MackKie-Mason

In [38], Wellman, Walsh, Wurman and MackKie-Mason deal with an environment of one machine,
on which time-units (time slots) need to be allocated to agents. Each agent has one job to process,
for which several time units may be required before a deadline. An agent’s utility from performing
her job is her private information.

A solution (which is combined of an allocation and payments) is evaluated ex-post, according to
the sum of utilities of the agents and the value of time slots which were not allocated. The authors

present a decentralized market-inspired protocol for reaching solutions in this environment.

2.2 Queuing Games

2.2.1 Naor

Naor [27] was the first to compare individual optimality to social welfare in a queue based on the

FCFS discipline, and to use payments, in order to implement a social welfare function.

2.2.2 Altman and Shimkin

Altman and Shimkin [4] analyze, from the queuing theory point of view, an environment where
the agents may choose between sharing a “mainframe”, a strong, common, computational resource.
Every agent has access to an alternative, exclusive, slower CPU. If the load on the mainframe is
higher than a certain threshold, i.e. the CPU share the agent gets is too low, the agent will prefer

the private option.

2.2.3 Van Mieghem

Van Mieghem [24] proposes a “generalized ¢ p rule ” scheduler for one server. The scheduling policy
approximates optimality of the social welfare function of the sum of weighted utilities — > W; T,
when the agent’s cost function from the output time is a non-decreasing, convex function and the

server is close to its full capacity. These results are valid for a vast range of input distributions.

2.3 Variations On The Cluster Scheduling Problem

2.3.1 Migration

Migration is a way to correct scheduling mistakes. When the institution sees that a certain job is
running on a non-optimal CPU, it can make it migrate (move it) to another CPU in the cluster.
This solution requires the jobs to be preemptive®, and the system to support migration. Migration
itself has a performance cost due to the time it takes to move the job between CPUs, and due to
ongoing calculations to determine whether a migration should happen. Hence, a migration is worth
performing only if the current situation is non-optimal beyond a certain level. MOSIX [8, 7], a
Linux [36] based “single system image”? cluster operating system is an example for a migration-

based system.

1A preemptive job is a job whose operation can be suspended and then resumed.
2A single system image is a concept which means making the cluster appear like one strong machine to the
users.

2.3.2 Off-Line Scheduling

Tanenbaum [34] describes the scheduling algorithm of “Shortest Time First” (STF), which yields an
optimal schedule for a single CPU, when the institution wishes to minimize the sum of completion
times. As indicated there, the problem the institution faces is that it has no knowledge of the jobs’

lengths, so it cannot schedule them to optimize the social welfare function.

2.3.3 On-Line Scheduling

When the time and number of arriving jobs is unknown (except for maybe a probability distribution),
on-line scheduling is called for. The institution must schedule the jobs as they are submitted,
possibly making decisions which are based on the statistical prediction of arrivals. These systems
may contain a queue of jobs which arrived, but has not begun yet. Often these systems are referred
to as queuing systems. Usually, the algorithms used in these systems are heuristics, which do not
yield an optimal schedule, but a certain approximation. For example, Condor [22], a high throughput
computing system, and Jobd [20], a utility for job management on the GNU/Linux [35] operating

system.

2.3.4 Backfilling

Backfilling, a term coined by Lifka [21] for the EASY scheduler for the IBM SP1 computer, is a
method for scheduling a cluster, when the jobs require the use of several CPUs at the same time.
If served according to FCFS (First Come First Served), jobs which require a large number of CPUs
cause cluster idleness (while waiting for enough CPUs to be free). On the other hand, letting jobs
which require a smaller amount of CPUs to leapfrog the vastly requiring job may lead to starvation.
Feitelson and Mu’alem Weil [15] compare variants of backfilling. Conservative backfilling: permits
such leapfrogs just for jobs which do not cause any delay to other jobs. This is done by asking the
agents for the expected length of their jobs. The agents have an incentive to give a short estimation,
since a shorter job is more likely to leapfrog, and will be scheduled sooner. On the other hand,
using job control tools, the job is killed (its processing is stopped) if it exceeds the declared length,
thus giving the agents incentive to declare a length which is at least as long as the real length. This

system also “compresses” the allocation, in order to close gaps. In this mechanism the agent’s utility

drops sharply when the declaration is shorter than the real length of the job. Comparing the final
outcome to the FCFS priority, it is “predictable” (or “just”): for a truth telling agent, every job’s
output time may only improve.

In EASY backfilling, jobs may leapfrog if they do not cause any delay to the first job in the
queue, thus losing the “predictability” property.

An important part of this work deals with the quality of the estimates. Even though the agents
knew the system had only one sided safety margins, 99.7% of them failed to declare a length longer

than the real length, and their jobs were killed before termination time.?

2.3.5 On-Line Schedulers Which Involve Monetary Transfers

These schedulers usually use market mechanisms to set the price, assuming the institutions owning

the cluster aim at making a profit.

REXEC

REXEC [14] is a scheduler which enables the agent to specify the maximal cost per minute that she

is willing to pay, and allocates her job according to that requirement.

Nimrod-G

Nimrod/G [9] supplies an economic environment for negotiations, auctions and other economical

mechanisms in order to match jobs with CPUs.

Libra

Libra [31] is an economy based on-line cluster scheduler. It requires the agent to specify three

numbers when submitting the job:

1. E The length of the job, in terms of the estimated time it would take to execute the job on a

stand alone CPU

2. D A deadline, which is a time.

3The authors claim that it is likely that some of those jobs had used checkpoints, so that not all the work was lost
(having checkpoints means the agent is capable of continuing her job from a point close to where the job was killed.

3. B a budget- an amount of money the agent is willing to pay.

The institution tries to deliver the output by the deadline, while charging the agent no more

than the budget. Upon submitting, the institution estimates the minimal cost as

E
t =aF —
cost = aF + —,

where «, 8 are coefficients. If the estimated cost is higher than the budget, the institution refuses
to perform the job, and the agent may submit it again with relaxed conditions.

The authors assume the agents tell the truth regarding the length of their jobs, while there might
be a trade-off between the deadline and the budget. Knowing the other agents’ declarations, and
the algorithm the scheduler uses, an agent might deliberately declare a wrong value as a job length,

in order to manipulate the allocation.

2.3.6 Distributed Decisions

The match making between the job and the CPU which will execute it can be taken in a central
decision-maker, or in a distributed manner. The distributed manner enables the scaling of the
cluster. Stankovic and Sidhu [32] present an algorithm for match-making, in which every job sees
just a part of the CPUs, and vise versa. This algorithm requires full disclosure of information on
both sides, in the form of contracts: every job must state its needs, and every CPU must state its
capabilities. MOSIX and REXEC also take the distributed decision approach, but Condor uses the

centralized approach.

Chapter 3

The model

In this chapter we describe the mathematical model for the allocation of jobs of certain lengths to
a cluster of certain CPU speeds. We then describe the job control tools, which are operators used
after the execution of the jobs had began, in order to make specific alterations to the schedule.
We describe the conflict between the agent’s utility and the institution’s utility, and formulate the

mechanism, which is the framework for solving that conflict.

3.1 The Primitives

N agents, each with a single job which needs processing, submit their jobs to a cluster of M CPUs! at
time zero. The length of each job is only known to the agent. Each agent also declares the length of
the job: the amount of work required to process it. This declaration is assumed to serve the interest
of the agent, and consequently, is not necessarily the true length.? An Off-Line Cluster Scheduling
Algorithm assigns each job to a given computer in the cluster based on the information provided by
the submitting agents. Ideally the OLCS algorithm would have the actual true parameters of each

job (i.e., its length) and would optimize cluster assignment based on that.

1When talking about a cluster, it is customary to deal with the term “node”, the basic computing entity in the
cluster. One computer may be associated with more than one node, especially if it has more than one CPU in it (an
SMP machine). In this work we assume every CPU is matched with exactly one node. We neglect the deficiency in
performance caused by sharing devices, e.g. I/O and network devices, so in other words we may say that we assume
every computer has just one CPU.

2 In contrary to a large part of the mechanism design literature, for example Mas-Colell et al. [23], the agent’s
type (her secret) is not in the utility function space.

10

In our setup the OLCS algorithm asks for the information and agents may choose to truly reveal
it or lie about it.

We shall denote by 6 = (01,...,05) € ON, © = R, a profile of jobs, where N is the number
of agents and for each 1 <n < N, 0, is its true length. We also denote by ¢ = (c1,...,cm) € Rf
a cluster of M CPUs, where the m!" CPU has processing power c,,. We assume the machines
are related: machines which can be characterized by a single number c¢,,, such that the time to
complete work 6§ on CPU m is exactly %‘3 While the actual units used along this work are not
important, there is a connection between the length and power units: the CPU power is measured
in length units divided by the time units used.

Another assumption we take is that the jobs are CPU-hungry during their entire execution:
at any point in time, if the CPU is busy executing one job, it cannot contribute to the execution of
another job without delaying the first job.

¢ is common knowledge, while the job’s real length, 6,,, is private information of agent n.

3.1.1 Allocations

The first task done by an OLCS algorithm is to define which job runs on which computer and in

which order. We refer to this as an allocation and define it as follows:

Definition 3.1 An allocation A of a set of jobs N is composed of:
1. A partition {N42},.car of N, namely Ym € M, N2 C N is a subset of N s.t.

Ume./\/[./\/;ﬁ - N

Vm#k NANNA =0 (3.1)

2. Work functions: Vm € M,V¥n € N2, X2(t) : Ry — [0, 1] denotes the percentage of CPU m
which is devoted to job n at time t, and satisfies sup{t : X/2(t) > 0} < oo, as well as Ym € M

XAm) = Y X}t <1
neNg

The work functions are continuous to the right.

3We ignore architectural differences, memory-size differences etc.

4In real life, this may not be the case: while one job is waiting for a resource, such as an I/O device or some
network input, another job may be processed without disturbing the first one. On the other hand, when processing
more than one job at the same time, both jobs suffer a penalty of context switching. Hence, some social welfare
function may improve by running jobs in parallel.

11

We refer to the function XA™ as the usage of computer m under allocation A.

The property defined by equation (3.1) is the no migration property, to which we limit ourselves
in this work.® The set of all allocations is denoted by A.
For a given profile of jobs, g, let us consider the subset of allocations that devote the exact

resources needed for computing:
Definition 3.2 An allocation A fulfills a vector of job lengths g if

Vme M VYne N2 ¢, XA(t)dt = 0,,.
t=0

The set of allocations which fulfill § is denoted by FUL(6).

Definition 3.3 For every allocation A and job n, we denote the beginning time of job n by
BA = inf{t: X\(t) > 0} and the ending time of job n by E2 = sup{t : X(t) > 0}. By T, we

denote the output time, the time in which the output of job n is given to the agent.

Definition 3.4 We say that a vector of output times, T := {T,}N_,, is supported by allocation
A, if T, > EZ for all n.

Definition 3.5 We refer to the tuple Q = (A, f), where T is supported by A, as the status of the

system. We abuse notation and define B9 as B4, and E? as EA.

3.1.2 Efficiency

Definition 3.6 An allocation A is efficient if

1. X4™ € {0,1} and is a non-increasing function, Ym € M. In other words: there are no gaps
in the usage of a CPU. The CPU is never partially used. If it is used at all, then it is used at

time 0.

2. XA(t) € {0,1} and is an interval in Ry ,¥n € N. In other words, there are no gaps in the

execution of a job, nor is it executed with just a part of the CPU at any time.

5In SMP machines, the operating system handles migration between CPUs in the same computer. As we mentioned
in footnote 1 in chapter 3, we assume in this work that every computer has only one CPU.

12

Let EFF be the set of all efficient allocations, and let

—

EFF(0) := FUL(0)(|EFF

The notion of efficiency we defined here differs from the notion of Work-Function-Pareto effi-
ciency:

—

Definition 3.7 V8 € OV, allocation A € FUL(A) is Work-Function-Pareto-efficient if AA’ €
FUL(Z) s.t. In € N s.t.:

EX > EN.

In other words, allocation A is Work-Function-Pareto efficient if there is no change that can be done
to it, which involves just one work function, such that the ending time of that job is improved.

Example 3.1.1 A Work-Function-Pareto-efficient allocation is not necessarily efficient.

Proof: For example, let us take M = {1,0.1}, 6= {2,1}. Allocation A, is Work-Function-Pareto-

efficient, but it is not efficient.

N ={1,2}
1 0<t«1
A, 0 1<t<?2
X1 (t):
1 2<t<3
0 3<t¢t
0 0<t«1

Ape
Xy (=4 1 1<t<?2

0 2<t¢

The gaps in the execution of job number 1 make the allocation inefficient, but there is no

alteration of X{4 * alone such that the ending time of job 1 will be sooner than 3. |

13

Example 3.1.2 An efficient allocation is not necessarily Work-Function-Pareto-efficient.

Proof: Let us examine allocation A.¢ on the same cluster, with the same set of jobs as Ap..

Ny = {1,2}

0 0<t<10
XMW= 1 10<t<30

0 30t
Aoy 1 0<t<10
X2 (t):
0 10<t

This allocation, though efficient, is not Work-Function-Pareto-efficient. Both agents would be
better off executing their jobs on CPU number 1, even if they move there without changing any

other work function but their own. [|

Definition 3.8 We say that efficient allocations A, A; share the same schedule if :

YneN neND o pneN
VYm € M,Vk,l € NA* Bi* > Bf* & B} > B*

Vm € M,Vk,l e Nat Efr > EfM & El > EM.

In other words, efficient allocations share the same schedule if the matching of jobs to computers

is the same, and the order in which jobs are executed within the computer is also the same.

3.2 Job Control Tools

Job control tools are used in order to alter the allocation after the cluster has begun executing the
jobs according to it.
The execution stage comes after a set of jobs is assigned to computers via an allocation. During

an execution some of the plans could contradict reality, as a consequence of agents not reporting

14

truthfully. For example, if a job ends prematurely, then the real ending time could be shorter than
planned. In the period of time between the real ending time and the planned one, the CPU would
be used by the job less than planned.

Consequently, for a set of a real allocation and real jobs, we have the following definitions, which
enable changing the allocation dynamically. We refer to the initial status as a static status, and to
the status after the changes as a dynamic status. We denote the dynamic status at time ¢ by Q(¢),
and the static status as Q(0) or Qstatic. By Q(00) or @ finar we denote the final status.

Recall that in our set-up, the initial scheduling is done based on the reported job lengths, which
may be quite different from the true lengths. Consequently, job execution may end sooner than

planned. More formally:

Definition 3.9 We denote the termination time of job n, the time in which job n was terminated,
by L, € R,. This time is only known to the institution after the job evecutes work 6,,.5 The
termination time of job n fulfills:

Ly
Cm X@Wdt =9,
t=0

3.2.1 Intuition For Job Control Tools

The term “job control” is used by system administrators to describe various ways by which one can
interfere with the CPU allocation during the execution of processes, in particular, ways to suspend
the execution and resume it at a later stage”.

Note that not all job control tools are necessarily available on every system, as indicated in
Stevens [33].

We focus on certain job control tools, which present a mathematical model of existing tools,

some of which are operated manually, and some automatically.

1. Renice®: The job gets only a share of the CPU, but for enough time to complete its execution.

60n the other hand, this information cannot be hidden from the institution.

7Job Control is used by various Unix shells, e.g. bash [11]. Job Control is also used by Jobd [20] as a manner of
punishment: When a job is submitted to Jobd, the user supplies certain demands of memory and CPU. If the job
uses less, Jobd tracks that down, and lowers the resources allocated to it. If the job uses more than declared, the job
is punished by a “renice” operation- the amount of resources it gets is limited.

8Based on the renice command on Unix systems.

15

2. Postpone® : the job stops receiving any computation power for some time, then it gets enough

share of the CPU for enough time to complete its processing.

3. Close-Gap'?: A gap is a period of time in which the CPU stands idle!'!, though there are jobs
or parts of jobs awaiting that CPU. This tool closes that gap by performing the tasks which

await the same CPU.

4. Early Release!? : The output of the job is given to the agent prior to the time agreed upon, as
soon as the processing of the job is done. We assume every system can use the Early Release

tool, as it is a matter of policy rather than availability.

Some of those tools are actually a combination of more basic tools, which are not useful on their

own. The tool Renice is a combination of the two following basic tools:

e Extended-Stay: Though the job was supposed to be stopped at a certain time, it gets an extra

amount of time.

e Reduced power: The job’s share of the CPU changes. However, the time in which the job’s

processing is stopped is not changed.
The tool Postpone is a combination of the basic tool Extended-Stay and the basic tool Gap:

e Gap!'3: The job does not get any share of the CPU for a certain amount of time. At a later

time, the job receives a positive share of the CPU again.

3.2.2 Formal Definitions for Job Control Tools

We turn to formalize the aforementioned job control tools in the form of operators over allocations.
As we exclude job migration, those operators do not change the partition: the sets N2 are set before

the execution stage, and do not change. As we later prove, it is optimal not to perform any changes

to the static allocation, hence the lack of migration does not impose a major constraint.

9Postpone, for example, is not possible if preemptions are not allowed.

10Resembles regular behavior on Unix Systems, when the commands are separated by “”: The next command
begins its execution once the first one has ended.

et us distinguish between full gaps, gaps in which the CPU stands totally idle (its usage being 0), and partial
gaps, when the the usage drops to a positive value. In this work we allow closing of full gaps only, to avoid complex
definitions.

12Typical of large clusters, such as the ASCI initiative [29, 39], where the agents do not have direct access to the
machine. This, unlike the former two, is not a common Unix tool.

13Resembles the combination of suspend and (after a gap of time) fg on Unix systems.

16

We begin with several preliminary definitions:
Definition 3.10 VYm € M,VQ € (A,RY), let
Qm = ({ Xy : k € Np} {Tx 1 k € N}).
Then Q is a Cartesian product:

Q = XmemQm-
We refer to Q,, as the status of CPU m.

Note that once the static statuses are set, changes done to the status of one CPU, by performing
an operator on it, do not affect the status of any other CPU. In other words, let us relate to operators

of two kinds:

e An operator on CPU m: OP,, on a status @, such that OP,, makes alterations to X,‘f,
Vk € NA.

A

no

e An operator on job n: OP, on a status @, such that OP, makes alterations to X', where

n € Nz, and it may affect also other work functions X! where k € N2

Then,

(OPn(Q))r = Qr VE #m
(OP,(Q)r = Qr VYn € N2 VEk # m.

Definition 3.11 Vr € Ry ,Vn € N, we define the job control operator ES,(r), referred to as
extended-stay for job n of time amount 7, on a status Q as follows, where n € N and
s stands for liminf, pa (X7 (£))":

A > pA
XES(N@)) = s Tt By >t 2 By

XA(t) otherwise

n

"Defining s as liminf, ga (X (t)) instead of X/A(F/) is a solution for the technical difficulty, resulting from

assuming that the work functions are right-continuous only, which means that X/ (EZ') = 0, while X/ (B/) > 0.

17

forl #n:

XAt lENA
XES @4y _ X7 (t) Le N and0<t < E}
0 leNA and BA<t<EA+4r
Xp(t=r) 1eNP andr+ B} <t
TES Q) pax(BFS (D@ 1A

Note that the extended jobs are not made to run in parallel to other jobs, even if they do not

use all of the CPU.

Definition 3.12 Vs,r € R.,Vn € N, we define the job control operator RP,(s,r), referred to as

reduced power for job n to percentage s from time r, on a status @ as follows:

sXA(t) ifl=nandt>r
XRPAEn(Q) () —) if

XA(t) otherwise

FRPA(1)(Q) _ FQ.

Note that if s < 1, then RP,(s,r) does not preserve the efficiency. More over: if A fulfills g and
s < 1, then RP,(s,r)(Q) will not fulfill . Though we make a general definition here, we do not
use RP on its own in this work: RP is used only to define the operator RN, and in this context we
make sure that the final allocation fulfills the vector of real lengths 6.

As part of the POST operator, we define the GAP operator. GAP transfers a part of the work
that needs to be done for a job to another time in the future, on the same CPU. In order to make
sure that the allocation formed by this operator is well-defined, the rest of the work is transferred
to some future time s’, at which the CPU is surely vacant. The GAP operator does not preserve

efficiency, either.

Definition 3.13 Vs,r € Ry,Vn € N, we define an operation GAP,(r,s), gap in job n from time

r until time s on a status Q, in which X,,(t) =1 Vr <t < E2, as follows:
XA(t) 0<t<r
XSAPH(TVS)(Q)(t) — 0 r<t<s

XA(t—(s'—r)) s <t

where n € N, s’ = max(s,sup{t : X{\(t) # 0}).
Forl#mn:

XCAP @ 1y = xA(t)

GAP, (r GAP,(r
T, (r(Q) ()(Q),TlQ)

= max(E;

Note that the definition of GAP, and in particular the use of s’, does not permit creating an
allocation in which two jobs run in parallel on the same CPU.

Now we turn to define the job control tools we will actually refer to later on:

Definition 3.14 Vs,r € Ry, Vn € N, V0,, € ©, we define the job control operator
RN, (s,r,60,) referred to as renice for job n from time r to a percentage s until it performs

a total work of 0,, on a status @ as follows:
RN, (s,7,0,)(Q) = RP,(0,L,) o ESy,(00) o RP,(s,7)(Q)

where Ly, , the termination time, is implicitly defined by

Ly
C’H’L/ stﬂ,(OO)ORPn(S,T)(Q)dt _ en
t=0
where n € N7

In order to define the CLOSE operator, we need to define split jobs. A job is split if its work

function is not an interval in time. More formally:

Definition 3.15 Job n € N2 is split if
3t s.t. BA <t < B} and X2A(t') =0
We denote the set of split jobs in N by SPLIT (N2).

Definition 3.16 Vs,r € Ry ,Vn € N, we define an operation CLOSE,,(r,s), close gap in com-

puter m from time 7 until time s on a status Q, in which X™4(t) =0 Vr <t < s, as follows:

FCLOSE (r,s)(Q) _ TQ

19

XA(t+s—7r) r<t< tirstsplit and n € NA

XSLOSE"L (r,8)(Q) (t) _
XA(t) otherwise

where tgirstspiie Stands for
inf{t: 3k € SPLIT (N2),3B;' <t < tst. X} (t) > 0and Xi} (') < 1}
In other words, t tirstspiit 5 the first time in which a split job on CPU m resumes its execution.

The limitation ¢ < tfirstspiir €nables activating CLOSE after GAP, or even several GAP oper-

ations, without undoing those GAP operations.

Definition 3.17 Vs,r € Ry,Yn € N, we define an operation POST,(r,s,0,), postpone job n
from time r to time s and let it continue until it performs a total work of 6,, on a status

Q as follows:
POST,(r,s,0,)(Q) = RP,(0,L,) o CLOSE,,(r,s) o ES,(c<) o GAP,(r, s)(Q)

where n € N4, and L, is implicitly defined by

m’

L,
Cm/ XSLOSEM(T’S)OES"(L")OGAP"(T’S)(Q)dt _ on-
t=0

Note that the POST and RN operators, as defined, cannot be used simultaneously on one
system, for if they are, then it might occur that at time s’ in which the CPU was supposed to be

idle, a job which was reniced is still running.

Definition 3.18 Vn € N, we define an operation EARLY,,, early release of job n on a status
Q, as follows:

Q
TEARLY,(Q) _ . L#n
l =
min(E3, L,) 1 =n.
VE>0, Vie N XPARR @y = xAr)

Note that EARLY is only well-defined at time L,, and only if L, < Efl‘. We constrain the use

of FARLY to those cases only.

20

3.3 Utilities

We assume in our model that all agents behave in order to maximize some utility function which
is known to all, and is a linear combination of the time it took them to receive the results of their
job with some monetary transfer. On the other hand, we assume that the institution also behaves
to maximize its utility, which is derived from the final status. The institution ignores the monetary

outcome.

3.3.1 Agents’ Utilities

Assume each agent n receives her job’s results at a positive time T,,. Also assume that every agent
is required to pay a price P, to the institution for the execution of her job (P, € R does not have
to be positive). Assume the agent has a valuation V, for a performed job. Then the agent’s utility

U, is
U,=V,—T, — P,. (3.2)

As we currently ignore individual rationality'® considerations, we may assume w.l.o.g. that V,, =0,

Vn e N.

3.3.2 Social Welfare

Definition 3.19 A social welfare function is a function g : Rf — R. The set of all social

welfare functions is denoted by G.

Definition 3.20 Yn € N, for any vector 7 € RY, let Z be decomposed as Z = (z,,2_,), where

Zz_p € RN-L,
Definition 3.21 A social welfare function is regular if Vz_,, € Rf‘l Vr,y € Ry
T >y = g(2-n,2) < g(2-n,Yy).

For example, the social welfare function

QZ—ZTk

keN

15 An individually rational agent will only participate if her utility from participating exceeds her utility from not
participating, which is considered 0. We currently assume all agents must participate. In section 7.5 we discuss
individually rational agents, who may choose not to participate.

21

is a regular social welfare function. We denote that particular social welfare function by gz.
Lemma 3.22 gZ s a reqular social welfare function.

Proof: For an arbitrary z_,, € @V~ C Rffl, and z,y € © C R, such that > y, we have

N-1
gZ (zep,x) = —x — Z zp <
p=1

N-1
—y=> 7% = g_(2-n)
=1 X
P

Therefore, gZ is regular.]

The function fgz is an example for a non-regular social welfare function.
Lemma 3.23 If g is a reqular social welfare function and

Ae argmaxaeFUL((;)g(E“)

then X4™(t) € {0,1} and is a monotonic decreasing function (in the weak sense) Vt > 0, ¥Ym € M.

Proof: Assume in contradiction that X“4™ is not non-decreasing. Then Je,§ > 0, to > t; + € such
that 1 > XA (ty) — 6 > XA™ ().

Alternatively, assume in contradiction 3t; s.t. 0 < X4™(¢) < 1. Since X4™ is continuous to
the right, 3§ > 0,e > 0, such that ty > t; +¢, and Vt; <t <ty XP™(t) <1 —6.

Then, in either of the cases, the CPU can perform at least an extra work of §(to — t1)cy,. Let
E™A ;= maxpena B, Let n be a job such that n € N} and Ej} = E™4.

Let us define allocation As:

Vje M /\G-A2=N]A

XAt +86 t1<t<tyandl=n
Xfay =] TOFO hsrst
XA otherwise

In this allocation we have added more work to job n. Let g denote the vector of lengths A fulfills.
Then exists a unique t3 < E™ such that
t3
Cm / XAyt = 6,
0

A

cm/ " XA2()dt = (s — t1)em.

ts

22

Let us define allocation As:

- As _ ArA
VjieM N =N

XAt +6 t1<t<tz3 andl=n
XlAs(t): 0 ty <t and [=n

XA () otherwise

Allocation Ag fulfills é: since we built it so for agent n, and we did not change the other work

functions:
Vi#n XP = X/
Vi#n Eff = E
E4 > E&
Then g(E43) > g(E4), and A ¢ argmazaEFUL(g)g(Ea). [

Corollary 3.3.1 If allocation A is Work-Function-Pareto-efficient, then X4™ € {0,1} and is a

monotonic decreasing function (in the weak sense).

Proof:If it does not hold for allocation A that X4™ € {0, 1} and is a monotonic decreasing function
(in the weak sense), then build allocation As as indicated in the proof of lemma 3.23. Under
allocation Az one of the agents is better off, while the others’ work functions are not changed, hence

A cannot be Work-Function-Pareto efficient. [|

Lemma 3.24 If g is a reqular social welfare function and A € argmaxaeFUL(g)g(E“) then XA(t) €

{0,1} and is a segment in time, Vn € N, V¢ > 0.

Proof: Let us assume by contradiction that on CPU m there is at least one job whose work function
is not a segment in time of value 1. Let J\Zﬁ denote the set of all the jobs on CPU m which are not

a segment in time of value 1:

N =Na({k: 3B <t < B st. X () <1}

23

Let us pick one member of that set (according to the assumption, the set is not empty), such

that no other job on this set ends after her:
ne{k:he Ny and B} > B} vjeNA}.
Due to right-continuity of the work function X?'(¢),

IBA <t < EA st. XA(h) <1=>
36 > 0,e >0,ta > t1 +€ s.t.

Vi <t <ty XA(t)<1-06.
Let N,én denote the set of jobs on CPU m, which are active while job n is active:
NA L = Na(Wk:3B2 <t < B} st.X{(t) >0}

According to lemma 3.23, the usage of CPU m is an interval in time of value 1 because allocation
A optimizes function g. Hence, all the CPU time which is not devoted to job n must be devoted to
other jobs, if job n has not ended yet (the CPU does not stand idle), and ./\7;3n 2 {n}.

Let [= |N£n\ Let i(k) be an ordinal number of job k in ./\7,3” according to its ending time,

such that
A A
Elviy=1y < = E =1y
vk € ./\~/'$n let us denote the CPU time job k got while job n was active by
Si(k) = Xyt

Now let us define allocation As such that:

VjeM _/\f]f42:j\[jA

1 le Nnﬁ)n and t;) <t <ti1)41
N 0 le N2, and B <t <ty
X () = ~
0 le N,',ql’n and tiy <t
XA (t) otherwise

24

where t; = B2, ti = EA and V1 < i(l) < I, i) = ti)—1 + Si)—1- Under allocation Az, each

A

n

job k € J\Z‘én gets the same work as under allocation A until time B/, and an additional work of
CmSi(k) from that time on, hence it gets the same work it got under allocation A. Hence, allocation
Ay fulfills the same vector of lengths g which A fulfills.

The order of ending times has not changed either. What has changed is the amount of work
done for jobs with an ending time after job [, before job [ends. For job [€ ./\77,‘3,”, [# n, under both
allocations all the jobs which end before job | must get their share of CPU time before job [ends.
Under allocation A, some other jobs (at least job n) also get some work done until that time, and

the following inequality is strict:

i()—1
Ef* > B + Z Sp.

p=1

Under Ay on the other hand, while the ending time of job n remains the same E4 = EA2, all

n

i()—1

other ending times in N4 improve: VI € N2, 1 #n, Ef** = Bj! +)

sp < ElA.

Hence,

g(E*?) > g(E*)
Adg argmaxaeFUL(g)g(Ea)

in contradiction to the assumption. |

Theorem 3.25 If g is a reqular social welfare function, then
Ae argmaxaeFUL(g)g(E“) = A€ EFF(9).

Proof: Follows directly from lemma 3.23 and lemma 3.24.]

Corollary 3.3.2 If g is a regular social welfare function, and

Ae argmaxaeFUL(g)g(Ea)

then A is Work-Function-Pareto efficient.

25

Proof: Assume in contradiction that A is not Work-Function-Pareto efficient. Then there is at least

—

one job n, and an allocation A’ € FUL(6), such that no other work function but n’s is changed, and

therefore:
Vk#n Ef = BY
and still by changing n’s work function alone,
E} < EX.
Then the value of the social welfare function g is higher on allocation A’:
g(EY) > g(E*)
and A cannot optimize g:

Adg argmawaeFUL(g)g(E“).
|

The institution’s utility is a social welfare function. It is derived either from the vector of times
agents receive their jobs in f, or from another element of the status, such as E. The first option
is typical of an institution which benefits from completion of jobs, because the agents work for
the institution to which the cluster belongs. The latter option is typical of institutions which sell
computing power to external agents. Such an institution may wish, for example, to clear its cluster
of jobs as soon as possible, rather than have the output delivered to the agents as soon as possible.

We will limit the discussion to social welfare functions of the first kind. We have already assumed
the institution is indifferent to monetary transfers. Thus, the institution’s utility is g(7'?(>)). An
extension of this work may deal with more general institutional utilities, which are functions of E

or of X.

3.4 DMotivating Example: A Straightforward Implementation

Had the institution known the lengths of the jobs 5, it could have chosen an allocation A to max-

imize the social welfare function. However, jobs’ lengths are private information and whereas the

26

institution can ask for that information, agents may choose to provide false information to maximize
their own utility.'®
Following is an example where agents prefer to lie, for a given direct revelation mechanism. In

this mechanism, the agents declare their lengths b , and the institution allocates A so that it fulfills

—

b, and maximizes g .
>
Lemma 3.26 An allocation which mazimizes gZ must be efficient.

Proof: Follows directly from lemma 3.22 and theorem 3.25.]

3.4.1 Example: The Need for Information
Let us examine the following situation:
o N=2¢=(1).
e No payments are made.
e The static allocation is A, an allocation which fulfills b and maximizes g(T) = — (T} + T3).

e Vn c N, ifb, <0, RN,(EX1,0,) is applied. If b, > 6, no operator is applied. In other

words, the final allocation is one which shares the same schedule as allocation A, but fulfills g,

In the static allocation, T = EA. In order to maximize g, given 5, assuming b truly represents 5,
there are two possible allocations, both of which are efficient, Work-Function-Pareto-efficient, and
fulfill . One of them, or both, maximize gZ depending on whether b; > by or the other way round.

W.lo.g., assume by > by. Therefore, an optimal allocation is:
0 0<t<by
A
Xl b1>b2(t): 1 b2 §t<b1+b2

0 by+b <t

1 0<t<b

A
X2 (t)=9 0 by <t<by+b

0 bo+b <t

16Mechanisms that use the original type space as the signal space are referred to as ‘Direct revelation’ mechanisms.
More generally, the institution may allow the use of an arbitrary signal space, and not necessarily jobs’ lengths.
However, due to the Revelation Principle [26], this restriction is without loss of generality.

27

and T = E.

Obviously, in our case where M = 1, every agent prefers to be scheduled first, and for that to
happen, she needs to declare a type smaller than the other agent’s. Hence, for both agents the best
declaration would be a lie: b; = by = 0, regardless of g. Now assume f1 < 05 in our example. Note

that agents lie, and the resulting allocation is not optimal.

3.5 The mechanism

A mechanism is a commitment of the institution on a particular course of action it would take in
reaction to agents’ declarations about their own lengths.'” This course of action has three compo-

nents:
1. Monetary transfers (prices).
2. A static allocation.

3. Job control triggers.

3.5.1 Prices

-

Definition 3.27 Vb € ©N,g € G, A price vector]3((;) € RY s a vector of functions P,(b) :

ON — R, each of which represents the amount of money agent n pays.

If the price is negative, we may think of it as compensation the institution gives the agent.

3.5.2 A Static Allocation

-,

Definition 3.28 Vb OV g € G, A static allocation o(l_;, b) : OV +— A is an allocation which

fulfills b and optimizes g.

3.5.3 Job Control Triggers

When job n is completed (at time L,), the institution knows that. If the job is not terminated
before time E;?, then the institution knows that 6,, > b,,. If L, < E;?, the institution knows that

b, > 0,. It also knows the exact value of 6,,:

17See footnote 16 in this chapter.

28

o, = [x. (0t
0
According to this information, job control tools are applied, subject to their existence on the oper-
ating system. An operator activated at time ¢y may not change work functions at times prior to tg.
At time tg, the only information used in the activation of the operator, is the information available
at that time. L, is only known if job n has already terminated its execution.

In order to define the terms of activation of the job control tools, we require the following

definitions:

Definition 3.29 If b, # 0,, agent n is lying. If b, > 0,,, agent n is lying upward. Ifb, < 6,,
agent n is lying downward.
e Systems With a Renice Tool
If 6, > by, the institution performs RN, (EZ, s,cnice;0n) according to some value of the
percentage Syenice Which is determined by the specific mechanism.
e Systems With a Postpone Tool

If 6,, > b,, the institution performs POSTn(E;?, Spost + E,?(O) — E,?’,Hn), where spost > Ef?
is a parameter depending on the specific mechanism. E,? ~ stands for the time in which job n

was supposed to be terminated according to the status when it began the execution.

The term E,? © _ E,? ~ comes to insure that a lying agent does not benefit from other agents

lying upward.

The RP operator which is one of the elements of POST is also a simple degeneration: its
effect is not the general effect of reducing the power to a certain percentage, but killing the

job altogether. Therefore, the postpone tool might be available, while the Renice tool is not.

e Systems With a Close-Gap Tool

When 6,, < b,, a termination happens at time ¢. The institution then reacts with
CLOSE,,(L,(t), E2),
where n € NA.

29

e Systems With an Early Release Tool

If 8,, = b,,, the institution performs FARLY,,.

Note that the way we trigger them, the POST and RN tools are replaceable, but cannot be
combined, since they are activated by the same trigger.
Also note, that when RN or CLOSE are activated, other jobs except the job which triggered

the operator are affected:

Definition 3.30 For any n € N2, we denote by F* := NAN{k: B > BA} the subset of jobs we
refer to as job n’s dependents: the jobs, including n, which begin after job n on the CPU it runs

on, under allocation A. Let f, = ‘FT‘LA’ denote job n’s dependency number: the number of jobs

; A
in set IR,

Definition 3.31 A mechanism Z = (o, P T) is composed of an output function, o(Z, i) : 2N s

A, a vector of price functions P =]3(T) and a vector of output times T which is supported by
A=o(3,7).

A mechanism is a pre-defined protocol of actions, taken in a known environment, which is the
rules of the game. The social welfare function g, and the price functions]3(5) are common knowledge.

Note that the price is a function of the declarations g, and does not depend on g.

3.5.4 The Game

We can now describe the N player game at the heart of our model. The game is held between the

agents themselves, under the conditions determined by the institution.

1. Mechanism commitment: The institution commits to a given mechanism that is composed of:

-

(a) Vb e OV, o(b,b)
(b) Vb e ©N, T(b)

-

(c) Vb e ©N, P(b)

—

(d) the available job control tools and their triggers: Vb,6 € ©N, o(b,)
2. Agents’ types (lengths) are drawn and privately communicated to them.

30

3. Declaration: The agents declare their types be oV,

4. Realization: Based on b and its earlier commitment, the institution decides on the static status
Q = (A, E*) € FUL(b)(where A = o(b, b)), prices P = P(b) and job control tool parameters:
either spost O Srenice, according to the job control tool in use. Note that at this point, the

status is delay free: T = EA.
5. Payment: The agents pay amounts P.

6. Execution: The jobs are submitted to the cluster according to Q. Job control operators are
applied according to the commitment in stage 1. We use the notation f(g, 5) to represent the
output times vector resulting from a game in which the agents declare 5, and the real types

are . We use the notation (7(5,) to represent the vector of agents’ utilities resulting from

the same situation.

Note 3.5.1 We currently assume that the agents who submit a bid cannot change their minds at

this point and decide to withdraw. We discuss this possibility in chapter 7.5.

3.6 Strategies

When facing the mechanism, an agent would decide upon certain courses of action, depending on
her type. Some courses of action may always be at least as good as others, while some would be

considered optimal in a narrower variety of cases.

Definition 3.32 V6,, € O, agent real types, a strategy for agent n in a mechanism Z is a function

Sp 1 © — O, such that S, (0,) = by, a declaration.

By S_pn(0-n) = Xk2nSk(0r) we denote the strategy tuple formed by all agents except n, when

they use strategy S.

Definition 3.33 Strategy S is a dominant strategy for agent n in a mechanism Z, if vl €
N b_,e0N-1p €O,

Definition 3.34 A strategy S : © — O is in Ex-Post equilibrium if it is the best strategy against

the other agents using the same strateqy, regardless of what their types are: ¥n € N, b, € O, g e eN,

=

Un((Sn(0n); S—n(0-n)),0) = Un((bn, S—n(0-n),0))-

The term “Ex-Post Equilibrium” was introduced in Holzman et al. [18]. We use this term
when agent n’s strategy is optimal, assuming all others play their prescribed strategies. However,
the Ex-Post equilibrium is stronger than the standard Bayesian equilibrium (which was introduced
by Harsanyi [17]), as it is the best reply for agent n even after learning the realized types of her
opponents. The Ex-Post equilibrium notion is weaker than the notion of dominance, because it
hinges on agents compliance with the prescribed strategies, whereas a dominant strategy is optimal

no matter how opponents act.

32

Chapter 4

Desired Mechanisms

In this chapter we present certain qualities of off-line scheduling mechanisms, by which we evaluate
a mechanism. These qualities may be objective (either the mechanism has this quality or it does

not), or they may be relative (senses in which a certain mechanism is preferable to others).

4.1 Incentive Compatibility (IC)

We wish to find a mechanism in which the agents are better off telling the truth. This way we verify

that

—

o(l_)'7 5) € argmaxFUL(g)g(fQ(o)) = o(l_)'7) € argmamFUL(g)g(fQ(oo)).
The best sense in which the agents can be better off is the sense of dominant strategies.

Definition 4.1 An arbitrary social welfare function g € G, is IC in dominant strategies in

mechanism Z if S(0,,) = 0, is a dominant strategy, when the static allocation optimizes the function

g.
A weaker notion of incentive compatibility is the following:

Definition 4.2 An arbitrary social welfare function g € G, is IC in Ex-Post equilibrium in
mechanism Z if S(0,) = 6, is in Ez-Post equilibrium, when the static allocation optimizes the

function g.

33

Definition 4.3 Mechanism Z implements function g in Ex-Post Equilibrium if g is IC in
FEx-Post equilibrium in mechanism Z.
Mechanism Z implements function g in dominant strategies if g is IC in dominant strate-

gies in mechanism Z.

4.2 Budget Considerations

As monetary transfers between the institution and the agents may be positive or negative, we look

at the aggregate sum the institution gets (the rent), and check whether it is positive.

Definition 4.4 A mechanism has positive rent if the institution never spends money: Vb € oV,

-,

2ren Pr(b) 2 0.

A more particular case of a positive rent (and a more desirable, since we assume the institution

is indifferent about the payments the agents make), is a balanced budget.

-,

Definition 4.5 A mechanism is budget balanced if Vb € OV > wen Pe(b) =0.

4.3 Safety Margins

Safety margins are the continuity of the utility of an agent with regard to the size of her lie, at the
point of truth telling!. It is possible to demand that the agents tell the exact truth, if they actually
know it. But as is often the case, agent n might have slightly perturbed information about its true

length.

Definition 4.6 A mechanism has upper safety margins if Ve > 0 3§ > 0 s.t. Vn € N,Vg €
G,¥beON,decoN

—

On < by < O0p+ 6= |Up(b, (by,0_p)) — Up(b,0)| < e.

INote that this notion of continuity differs from the notion of continuity of the outcome function, which is introduced
by Mount and Reiter [25], and is later used by Hurwicz [19]. The continuity of the outcome function relates to the
continuity of the allocation with regard to the declarations. Obviously, we do not expect any off-line cluster scheduling
mechanism to be continuous in that sense.

34

A mechanism has lower safety margins if Ve > 030 > 0 s.t. VYn € N,Vg € Q,Vg coN feolN

—

Op, — 6 < by, < Op = |Un(b, (bn,0_0)) — Un(b,0)| < e.
We say that a mechanism has safety margins if it has both lower and upper safety margins.

When a mechanism has one-sided safety margins (either upper safety margins or lower ones),
and the agent only has distributional information d,, over 6,,, the strategy of telling the expectation

value of the length of the job may be inferior to telling a diverted value, such as sup{z : d,,(z) > 0}.

4.4 Fixed Prices

There is an advantage in setting the payment stage before the execution stage: since the monetary
transfer may be from the agent to the institution (agents actually pay for the execution of the job),
setting the payment stage before the execution enables the agent to change her mind and withdraw
once she knows the price.

We design all the mechanisms we suggest such that their prices are fixed. This approach is not
mandatory, as suggested by Nisan and Ronen [28]. In the spirit of their work, it is possible to build
a mechanism for the off-line cluster scheduling problem, which maximizes the gZ function. If the
payment is postponed till after the jobs are executed, and their real lengths are verified, then the
payment to agent n is composed of a compensation part, which equals the negation of her utility
from execution, and a bonus part, which depends on the declarations of the other agents, and on

her own real type. Nisan-Ronen’s style payment function would be, in this case,

Po(b,0) = =T (6,0) + > _ Th(b, (0, b))
k#n

which would make the agent’s utility

35

coincides with the gZ social welfare function. In this mechanism the effect of #_, on the utility
function of agent n is neutralized by verification, but the agents cannot know in advance the price

they will have to pay.

4.5 Justness

An agent may feel more secure, if she knows that when she tells the truth, her output time will be

no more than according to the static status. This is a quality of the mechanism:

Definition 4.7 A mechanism is just if Vn,Vg, beoN

-, —

by =0, = Tn(b,b) > T, (b,0).

In other words, if the mechanism is just, a truth teller is promised a minimal utility at payment
time. The truth teller’s utility will not be damaged when other agents’ lies are revealed. This quality

enables the institution to keep its commitments to the agents.

4.6 Scalability- Limitations on Input

A good mechanism accepts wide, possibly unlimited, ranges of real types, and manages to execute
the jobs. It also works for large variances on the job lengths: different agents may have jobs which

vary substantially.

4.7 Final Social Welfare

On Equilibrium, all agents report their real type, and the institution is able to optimize the final
social welfare, which is equivalent to the initial social welfare. However, the social welfare of off-
equilibrium situations carries importance as well. An off-equilibrium situation might be reached due
to insufficient information, as described in section 4.3, or even due to irrational agents.

The social welfare function is not only a quality measurement: it is also the utility of the insti-
tution, (especially if the agents are workers of the institution): it benefits from the early completion
of the jobs. A situation where a portion of the jobs is not completed is not acceptable.

Hence, we define a quality of final social welfare:

36

Definition 4.8 Let Z! = (01,ﬁ17f1), 72 = (027132,f2), be two mechanisms which optimize the
same social welfare function g. Z' has a better final social welfare on OY C OV than Z2 if

Ve ®©,be OV,

37

Chapter 5

A Special Case of a Social Welfare

Function

In this chapter we focus on a particular, natural social welfare function: gZ = > ken Ukt the sum of
utilities. We then turn to describe the Vickrey-Clarke-Groves mechanism, and view that in contrary
to other environments, it is not effective in the off-line cluster scheduling environment. We end this

chapter by proposing a mechanism which gives positive results for gZ in this environment.

5.1 The Vickrey-Clarke-Groves Mechanism

5.1.1 Introduction

Consider an example where a single good is auctioned off. In that case, the Vickrey-Clarke-Groves

-,

(VCG) mechanism [37, 10, 16] implements g = > W, (o(b),0,) in dominant strategies, where b are
the declarations, and f are the secrets: the real valuations of the good. o(q) is the allocation (the
decision: which of the agents gets the good), which depends only on the declarations, and W, is the
agent’s utility from the allocation itself (not from the payment): if agent n gets the good, then her

utility equals her valuation of the good. Otherwise, it equals zero. Thus, the agent’s utility depends

on the chosen allocation and on the agent’s own type, only.

38

The major difference between an auction environment and the off-line cluster scheduling envi-
ronment, is that the allocation in the former is based only on the declarations. The types in the
auction environment need not be revealed, though some information about them leaks. The price
the n-th agent pays is

Po(b) = — Z Vio(b, by,).
k#n

Agent n’s utility from the allocation combined with the money paid is

Un(b,0,) = Wi (b, 0,) + > Wi(b, by)
k#n

so that when agent n is truth telling, her utility coincides with the social welfare function gz,

S
—~
S
o
3
~
I
(=
=
—~
=
=
o
~—

(5.1)
k=1

and is assured to be maximized by the mechanism, no matter what the other real types are. Thus,

VCG ensures that gZ is IC in dominant strategies.

5.1.2 A VCG Mechanism For Off-Line Cluster Scheduling

If we try to implement VCG in our environment, we face a problem. Here, the mechanism outputs
a vector of work functions and a vector of output times. The agents’ utility does not purely depend
on the declarations 5, but also on the real lengths g of the other agents. If agent n lies and her job
exceeds the limit of calculated allotted time Er? ~, the beginning of the following (one or more) jobs
may be delayed. If a job is shorter than declared, others may begin processing before scheduled.

—

The agent’s utility from the allocation is —Tn(l;, 0). According to VCG, agent n should pay

-,

Pn(l_;) = Zk?&n Tk(l;, b), and the overall utility in case agent n is truth telling, is

Un(gv (bm e—n)) = _Tna_;’ (bna e—n)) - Z Tk(ga g)
k#n

while the mechanism maximizes

39

which does not coincide with a single agent’s utility function. Therefore, the fact that the institution
maximizes its own utility function does not guarantee the optimization of the agent’s utility: It

should be possible to find a combination of 5, g and ¢, such that

—

Un((bn,b-n),0) > Un((6n,b-n),0).

In order to achieve an implementation in dominant strategies, it is essential to neutralize the

effect of #_,, on the utility function of agent n.

5.2 Hypotheses and Counter Examples

Could it be that the VCG payments are enough in order to insure the implementation of the gZ
social welfare function in dominant strategies? Could it be that no matter what set of well-defined
job control tools we choose, a VCG mechanism would still implement the gz social welfare function?

We claim that it is not so: The strength in which the mechanism implements the social welfare

function depends on the job control tools applied.

5.2.1 The Light VCG Mechanism: Counter Example 1

Let us introduce the light VCG mechanism:

e The prices paid reflect the sum of the other agents’ utilities, according to b:

e The only job control tool applied is RN, (E2,1,6,), according to the triggers defined in sub-
section 3.5.3. Thus, jobs are run until their termination time, using the full CPU power. Of
course, if a job exceeds the time allotted to it, it will cause a delay in the beginning time of

its dependents (excluding itself, of course).
e The institution chooses the allocation such that gZ (T)) is maximal.

Under the light VCG mechanism, consider 6= (1,1.1), €= (1). Obviously, in the case of M =1,

the heuristic of performing the shortest job first (similar to the STF algorithm in Tanenbaum [34]),

40

maximizes gz. Assume agent 2 declares by = 0.2 < 65, supposedly trying to beat agent 1 and get
to be the first to run.
Let us compare agent 1’s utility from declaring b; = 0.1, to her utility from telling the truth. In

the first case, the static allocation would be:

1 0<t<0.1
0((0.1,0.2),(0.1,0.2

0 01<t

0 0<t<0.1

X;((o.1,02),(o.1,o.2)))(t): 1 01<t<03

0 03¢t
and T = E°((0.1,0.2),(0.1,0.2))

Hence agent 1 would pay the price of P, = Eg((O'I’O'Q)’(O'l’O'2))) = 0.3. The final allocation would

be

—

0((0.1,0.2),8) = RN5(2.1,0,1.1) 0 RN5(1.2,1,1.1)

oRN;(1,0,1) 0 RN;(0.1,1,1)(0((0.1,0.2), (0.1,0.2)))

which means the final work functions are

B, 1 0<t<1
Xf((o.l,o.z)ﬁ) (t)=

0 1<t

0 0<t<1
X;((o_l,o.Z),é)(t): 1 1<t<21

0 21<t

with T = Eo((0:1.02).0) — (1,2.1). The first agent’s utility comes to

U1((0.1,0.2),0) = —T1((0.1,0.2), 6) — T5((0.1,0.2), (0.1,0.2)) = —1 — 0.3 = —1.3. (5.2)

41

If agent 1 decides to tell the truth, the static allocation would be:

0 0<t<02
xOODMO2N 8 go<pe19

0 12<¢

1 0<t<0.2
0((1,0.2),(1,0.2 >
XQ(()))(t)——

0 02<t¢
With output times T = E°((1.0-2).(1.02)) — (1.2,0.2).

The price agent 1 pays would be smaller:

Py = EL00.102) _ o

The final allocation would be

—

0((1,0.2),8) = RN5(1.1,0,1.1) 0 RN(0.2,1,1.1)(0((1,0.2), (1,0.2)))

Xf((1,0.2),9)(t): 1 11<t<21

0 21<¢

7 1 0<t<1.1
XZO((LOQ%@)(t)

0 1.1<¢

with T = Eo((1,02).0) — (2.1,1.1). The first agent’s utility comes to a value lower than in equa-

tion (5.2):

— -,

Uy ((61,b2),0) = =Ty ((01,b3),0) — Ty (b, b) = —2.1 — 0.2 = —2.3.

So truth telling is not a dominant strategy, and therefore, VCG payments combined with an arbitrary

set of job control tools, are not enough in order to implement gZ in dominant strategies.

42

5.2.2 The Light VCG Mechanism: Counter Example 2

In subsection 5.2.1 we proved that truth telling is not a dominant strategy in the light VCG mecha-
nism. The following example demonstrates that the light VCG mechanism does not implement g
in Ex-Post equilibrium, either.

Take the light VCG mechanism, on the case where @= {1}, § = {2,1}. Assume agent 2 is truth
telling, bo = 6. If agent 1 tells the truth, by = 67, then both agents are truth telling, job 2 is

executed first, and agent 1’s utility comes to

— -,

UL(0,0) = —T1(b,6) — To(b,b) = —3 — 1 = —4.

If by = 0.5, job number 1 is executed first, and

— — -,

U1((0.5,0),0) = —T1(b,0) — To(b,b) = —2 — 1.5 = —3.5.

Therefore, VCG payments are not enough in order to implement gE in Ex-Post equilibrium either.

5.3 VCG and Job control Tools

In this section we devise several methods which enable the implementation of gZ in the off-line

cluster scheduling environment.

5.3.1 The Harsh Punishment Mechanism

Let us introduce the Harsh Punishment mechanism:
e P=0: no prices are paid.
e Instead of the standard triggers we defined in subsection 3.5.3, the institution performs
POST, (min(E2, L), 00,0, +¢)

for some positive value of €, whenever b, # 6,. This means that if an agent lies, she will
never get her output, and the execution of her job will be stopped (postponed to infinity, or
alternatively reniced to a zero share of the CPU), practically without altering the rest of the

schedule.

43

e The chosen allocation optimizes gz.

Obviously, this mechanism implements gZ in dominant strategies, since truth telling is the only
way to get the output of the job, thus achieving a finite utility U,, = an(l;, b) > —o0.
The harsh mechanism is the trivial solution. While this mechanism is just, scalable, and its

prices are known before the execution stage, it has no safety margins at all, and regarding its final

social welfare it is the worst mechanism that could be.

5.3.2 Other Implementations of the gZ Function

In the following lemmas, we prove that it is possible to implement gZ using either of the two job
control tools: RN or POST.

When discussing the case of b,, < 6,, in the RN based mechanism, job n’s dependents are affected.
Those agents’ utilities depend upon agent n telling the truth, since the dependents’ beginning time
(excluding n’s, of course) is increased if agent n is lying downward. Due to this dependency in the
RN based mechanism, it is only possible to implement gZ in Ex-Post Equilibrium. With POST,
though, it is possible to implement gZ in dominant strategies, since a downward lie does not affect
truth telling dependents at all.

We will prove that the utility of agent n cannot increase beyond her utility while telling the
truth, whether b,, > 0,, or b, < 6, in those two mechanisms: in the POST mechanism, while no
assumptions on other agents’ declarations are made, and in the RN mechanism, while other agents
are assumed to be truth telling.

From the cases of b,, < 6,, we devise the valid ranges for the parameters s;cnice, Spost: ranges for
which the equilibria hold. It is left for the institution to choose the exact value for those parameters,
within the permitted range. Though any value within the range will do the same when all agents
are truth tellers, the choice of those values has an effect off-equilibrium on the final social welfare,
as discussed in subsections 7.1 and 7.6.

Since later on we deal with social welfare functions other than gZ , and even use notations relevant
to two social welfare functions in the same equations, let fg, [727 02 denote f, U ,0 accordingly, in

a system where the institution optimizes gz.

44

Lemma 5.1 In a system with RN, CLOSE and EARLY , where the social welfare function is gZ ,

and all other agents are truth telling, an agent cannot gain by declaring more than her real type.

Proof: V@j beoN gt. b_, =0_,, b, > 0,, we wish to prove that

— —

Usn(0,0) > Us ((bn,0_0),0).

Agent n’s utility is
UE,n((bna g—n)a 5) = 7T27n((bm G_n), 5) - Z TE,k((bna Q_n), (bna g—n))'
k#n

All other agents are truth telling, so no alterations are made to A until time L,,, and the allocation

is still efficient at that time, according to lemma 3.26. Hence,

where n € N4, A = OZ (b, 0—1), (b, 0_p,).
The final status is :

Q(o0) = || EARLY: 0 CLOSEp (L, E})(Q).
k#n

So agent n will get her output in the same time as if her job’s length was really b,,:

—

TE,n((bna 9777,)7) = TZ,n((bna Q,n), (bna 9,71)) (53)

Hence,

—

Uz,n((bn79,n)79) =

_TE,n((bna 9—n)7 (bn7 e—n)) - Z TZ,k((bnv e—n)a (bna e—n)) =
k#n

— ZTE,k(<bn> an)7 (bn7 9*“))
k=1

9. (E*).

Since the institution optimizes gZ (E““)7 the agent’s utility function coincides with the social welfare
function, in a similar way to the original VCG utility function in equation 5.1, which does not depend

on other agents’ real types. Hence, b,, = 0,, is the best declaration. |

The following two lemmas will be used in the following proofs.

45

Lemma 5.2 VZ € OV vy, € O,
5 _, In —Y
ZTEk (Y, T=n), (Yn,T-n)) ZT2k$$>—fﬁ4%
keN keN m

where A = OZ (Y T—n)s (Yn, 7)), n € N2 and f2 is defined according to definition 3.30.

Proof: Let A = = ((Yn> Z—n), (Yn,T_p)). Let us compare two allocations which share the schedule
of allocation A: A and A’. Let A’ fulfill Z. A’ can be created from A by applying
[T BNk, 1,24).
keFz

Then we can bound :

D Tor(®3) < D Topl(yns), (g w—0)) + i =

keN keN Cm

where n € NA. [

When the total work to be done is bigger, it is impossible for a system which optimizes gZ to

reach a larger value for gZ (E), as we prove in the following lemma.

Lemma 5.3 V0 € OV, if 6, <b, € O, then

Z Tgk(é' 5 Z TE k bnaa) (bnae—n))

keN keN

Proof: Using lemma 5.2, we can bound :

Z Tz,k(@ 5) <
keN
Abn - en
Z TZ,k:((b’ruefn)a (bnaefn)) - fn — <
Cm
keN
Z TE,k((bny 9—11)7 (bna 9—77,))
keN
where A = o, (b, 0_1), (bn,0_1)), n € NA. u

Lemma 5.4 In a system with RN, CLOSE and EARLY , where the social welfare function is gZ s

and all other agents are truth telling, an agent cannot gain by declaring less than her real type.

Proof: When agent n lies such that b, < 6, the institution performs RN, (E4, s,cnice,0n), Where

the value of s,cpnice is a free parameter, left for the institution to define. ‘v’@,b € ON sit. b, =

46

0_,, b, < 8,, let us calculate a range of values for s,cpice, sufficient to insure that lying upward is

not beneficial. S;epnice should be s.t. VO < b,, < 8,, it holds that:

— —

Usn(0,6) > Usu((bn,0_0),0)

_TZ,n(é'v ") - Z TZ,k(é: _‘) Z _TZ,n((brm 9—71)75) - Z TZ,k((bnve—n)’ (bn7 e—n)) (54)
k#n

-,

Let A := OZ ((bn,0—1), (b, 0-p)) = 0Z (g, b). Due to the use of RN, (EZ, srenice; On),

Ty (bs 0-), 8) = T (s O, (b Bn)) + — 20 (5.5)

SreniceCm
where m is s.t. n € N4, Hence, after substituting equation (5.5) in equation (5.4), we can tell that

we need to find a range for S,enice, S.t. it satisfies

S T @.0) < 2 S T (b, 6), (b 60) (5.6)

S iceC
keN renicetm keN

Using lemma 5.2 together with equation (5.6), we get that it is sufficient for s,.cnice to satisfy
1
<

Srenice > fA .
n

Note that the value of s,enice depends only on the values of l_;, so it can be declared before the
execution stage, either for each job separately (by setting s,enice for job n as %), or together for

all jobs, according to Srenice = mmke/\f]%» -
Theorem 5.5 In a system with RN, CLOSE and FARLY , it is possible to implement gZ mn
Ez-Post equilibrium.

Proof: Follows immediately from lemma 5.1 and lemma 5.4.]

An Implementation of gZ in Dominant strategies

Lemma 5.6 In a system with POST, CLOSE and EARLY , where the social welfare function is
gz, an agent cannot gain by declaring more than her real type.
Proof: V0,b € OV s.t. b, > 0, we wish to prove that

Un((enab—n)a) - Un(g, 9) > 0.

47

-,

Let us concentrate on Q,,, the status of CPU m. Let n € N4, A = 0Z (b,b). Let N4 :=
NA\{n}. Since job control operators, which are invoked due to a lie of a certain agent, affect only
the status of the CPU that agent was allocated to, the dynamic status of CPU m! depends only on

the static status for CPU m, and a combination of operators on that CPU or on jobs on that CPU.

k,—
Qm7dynamic = H {Okn CLOSEm(Lkn E]?)}(Q)
keNA,

—n

where Oy, stands for either POST}, or EARLY},, and Q% ~ stands for the dynamic status at the time

in which job k begins its execution.

—

TEQjLMGZ = TE,n(g, 9) = Tg,n(l_)', g) (57)

Equation (5.7) holds since: Vk, POST}, affects only E) and T,. EARLY}, affects only T). None
of these operators change B,,, E, or T),,. The CLOSE operators performed before B will change
B,, and FE,, but not T,,. Even if F, has changed by time L,, T}, will only change if EARLY,, is
applied. FARLY,, is not applied, of course, since b,, # 0,,. POST,,, which can also affect T}, is not
applied either, since b,, < 0,,.

Had agent n told the truth, FARLY,, would have been applied. In that case we would get:

—

TE,”((GTHb—)) ((Hnab) (anvb—n)) (58)

and using equation (5.7) and equation (5.8) we get

UZ,n((e’ru b—n)7 _a) - UZ,n(ga g) -
_TE,n((anabfn)aé))"_TEn 55 ZTEk enyb gn,b +ZTEk 55 >
k#n k#n
— > TSk (Onbon), Onsbn)) + Y Tok(B,b) > 0.
keN keN
The last inequality holds due to lemma 5.3. |

Note that if agent n lies downward, the POST job control tool does not permit a change in By,

not in Ey for job k, which is allocated to the same CPU as n, at a later time. On the other hand,

1The status of CPU m was defined in definition 3.10.

48

when job n depends on jobs whose agents lied upward, the performed CLOSE operator decreases
B,, and FE,. The decreasing of T}, to match F, depends on the institution performing EARLY,,.
Thus, for every set of real types and declarations, EARLY,, may decrease T,, in a different amount

of time: the possible gained time, defined as follows:

Definition 5.7 Vb€ OV, 9_, € ©N- 1 geg, A= 0(5,),n €N, let

-

DA(b,6_,) := T, (b, b) — Ty (b, (b, 0_,,))

DA(b,6_,,) is the possible gained time when the institution optimizes g(T), the agents declare b
and the other agents’ real types are g. D,’:‘(g, 0_,) is the amount of time by which the beginning time

of job n can be made earlier due to lies of fellow agents.

Note that D (b,0_,) > 0. Of course, the value of DA(b,6_,) actually depends only on the real

length of the subset of jobs that job n depends on.

Lemma 5.8 In a system with POST, CLOSE and EARLY , where the social welfare function is

gE, an agent cannot gain by declaring less than her real type.

Proof: Vé; be OV, s.t. b, < 0, we wish to find a range for sps, which is to be determined by the

mechanism, s.t.

Let n € N4, A = o(b,b). Using the same notation as in the proof of lemma 5.6,

k,—
Qm,dynamic = 1T {01, CLOSE, (L, EZ)}
keNA, and BEA>E#
oPOST,(E;!,s,0,) o I1 {0k, CLOSE, (L, EZ)}Q)
keENA and EA<BA

As in the proof of lemma 5.6, POST) and EARLY), affect only the times of the agent k. CLOSE
operators performed on the set N4, N{k : Ef* < B#} will decrease B,, and E,, in the same amount,
independently of the value of 8,,. The only differences in agent n’s utility, between the case where

agent n is truth telling and the case of b,, < 8,,, are due to the possible gained time and the affect

of POST,,.

49

We seek a range for spos: s.t.

—

UZ,n((env b—n):) -

Ts.n(b,0) = Ts (6, b_1
k#n k#n

According to the definition of POST, :

M A an - bn T
Ts.n(b,0) = T n (b, b) + + Spost + Dir(0,0_,).

Cm

—

T n((0n,0-0),0) =

_Tzﬂl((en’ b—n)’ (0n7 b—n)) - Dﬁl((GTM b—n)7 e—n) >

_TE,n((ena b,n)7 (em b*n))

where A’ = 0Z (0, b—n), (Br,0—1)).

By definition,

Usn((0n,0-0),0) — Us (5, 0) =

_TZ,n((ena b—n)a 5) + Tz,n(gv _')
N+ > Te (b,

- Z TE,k((9n7 b*’n)7 (97’17 b*
k#n

k#n

Using equation (5.10) we get

_TE n(anv b
k#n

- Z TE,k((em b*’n)7 (anv b*
keN

and using equation (5.9):

-,

Ts.(b,0) + > Tsi(b,b) >

k#n
> To(bb) +

0, — by,
+ Spost-
keN

When substituting back into equation (5.11) we get

Uss . ((Bry b—1), 8) — Us: (b, 6) >

ZTgk Gn,b 9n7b +ZT2]€55

On —

+ Spost
Cm EeN

keN

50

UZ,n(

ZTEk anvb (Qnabfn)) 2
n))

-

)+ T k(8,0) = > T k((Onbon), (O, b

)

6)

n))

—

Y

(5.9)

(5.10)

(5.11)

Substituting lemma 5.2, we get :

o oo 1 '
UE,n((Hmb—n)v) — UZ,n(ba 0) > (0n — bn) <C_ - fnl> =+ Spost-

where A’ = o ((bn,0_1), (bn,0_p)), n € N4,

So it is sufficient for spes: to fulfill the following condition:

Spost Z (Qn - bn) <L - i) 2 (9n - bn) (f;?/ - i) . (512)

minjeam €j Cm Crmn/ Cm,

Since the expression (6,, — by,) (ﬁ — C%ﬂ)is non-negative, we present one of the following

limitations to insure that s, fulfills the condition:

1. Let Hgiry € Ry be an arbitrary parameter of the cluster. If 8, — b, > Hg;ys, the lie is too

large, and the execution is stopped (a limitation on the downward lie).

Before the execution stage, the institution needs to set spost s.t.

N 1
> Hy; _— . 5.13
Spost = Lidif <minjeM cj cm) ()

2. Let Hg;ry € Ry be an arbitrary parameter of the cluster. ¢,, is limited: execution is stopped
when amount of work H,s is performed on a single job. The institution sets before the

execution stage Spos: S.t.

Spost > (Habs — bn) <L - i) . (5.14)

minjeM Cj Cm

Theorem 5.9 In a system with POST, CLOSE and EARLY , it is possible to implement gz in

dominant strategies.

Proof: Follows immediately from lemma 5.6 and lemma 5.8.]

5.4 Are Monetary Transfers Really Needed?

In this section we verify the necessity of the monetary transfers in the class of mechanisms which

we devised.

o1

We have proved that a combination of job control tools and monetary transfers is sufficient to
implement g . Would a mechanism which uses job control tools the same way, but does not allow

monetary transfers, implement gZ as well?

Example 5.4.1 In a mechanism where

e the available job control tools are POST, EARLY and CLOSE, triggered according to sub-

section 3.5.3.
o« P=0.
e the institution mazximizes g
truth telling is not IC in Ez-Post equilibrium.

Proof: Take the case of ¢ = {1,1.5}, § = {1,1.01}, and assume by = 6. If agent 1 tells the truth,
job 1 is located on ¢1, and

— —

- - 1
Us, 1<b, 9) = —Tz)l(b, (9) = —I +0=-1.

)

On the other hand, if agent 1 declares b; = 1.1, job 1 is located on ¢z, and

. L1
Us1(b,0) = —Tx1(b,0) = 1 +0>—1.

That happens due to EARLY; not being activated: since agent 1 lied, she does not get her

output as soon as she can, but rather as if ; indeed equaled b . [|

52

Chapter 6

A General Social Welfare Function

6.1 introduction

In this chapter we propose a mechanism which implements general social welfare functions in the
off-line cluster scheduling environment.

g = — Y. T, is usually a practical social welfare function to implement, since the throughput,
defined as ﬁ, increases when g = — Zf:;l T, increases. The throughput is a good measurement
for the average efficiency! of the use of the resource.

And yet, when the important thing is not average throughput, but dealing with bursts of tasks,
the institution often cares to implement a social welfare function other than gZ . A common example

is the make-span function, as indicated for example by Abdekhodaee and Wirth[1] by Dodin and

Elimam [12].

Definition 6.1 VI € 1..N, the make-span of order [is a function makespan' : Rf — R which

is defined as

1
makespan' (T) = — kl#kﬁna;éckl iy E Tk,
i=1

The common social welfare function is makespan', which is actually —maxenTi. Optimizing this

function means choosing the allocation such that the lowest utility among all agents is optimized.

1The term “efficiency” comes here in its everyday meaning, without connection to definition 3.6 of efficient alloca-
tions.

53

Since several allocations may optimize the make-span function, a common tie-breaker (instead of a

lottery, for example) is the lexical max function.

Definition 6.2 Vb € OV, let

-,

ms®(b) = FUL(D),
and V1 € 1..N let

mst(b) = {A: E4 ¢ argmaxA,emsl,l(g)makespanl(EA/)}

-, -,

VA € FUL(b) let us define the lexical-max function, lexicalmazx : FUL(b) :— R as

-,

lezicalmaz(A) = sup{l : A € ms'(b)}
In other words, the set ms®(b) consists of all the allocations which fulfill b. ms!(b) € ms°(b) is
a subset of allocations which minimize the time of the last job to be completed. ms2(b) C ms*(b)
consists of the allocations which, in addition to minimizing the time of the last job to finish, minimize
the time of the job to finish before last, and so forth.
Lexical max is a good social welfare function mainly when the institution is the employer of the

agents and not just the cluster owner.? Another example of a social welfare function might be a

weighted make-span, or a weighted sum of utilities.

6.2 The Extended VCG (EVCG) Mechanism

We already know (from theorems 5.5 and 5.9)that the VCG payment function, combined with certain
job control tools, enables the implementation of the gE function. Let us try and optimize a general
social welfare function when picking the allocation, while compensating the agent. We could pretend
that we offer the agent to participate in a mechanism which optimizes g27 and then we offer her
a monetary compensation for changing the allocation to one that optimizes another social welfare
function. Under that spirit, let us examine the extended VCG payment function:

Po(b) = T (5,0) + T (b,5) + > T (b, b)
k#n

?Lexical max is less demanding than a precedence constraint, which Azar and Epstein [5] deal with. Under a
precedence constraint, certain (specific) jobs must end before another can begin, and the institutional utility depends
on the time the last one ended in. Under lexical max the order within the group of jobs does not matter, but the
institutional utility does depend on the completion of the whole set of jobs.

o4

N
= —T,(b,0) + Y T k(b.b). (6.1)
k=1

The extended VCG payment function is composed of three terms:

-,

1. =T, (l;, b) a compensation for the time spent, assuming all agents are truth telling.

2. Tz’n(l_)', 5) the negation of the time that would have been spent, assuming all agents are truth
telling, had the social welfare function been gs;.

-,

30 D ktn T (b, b) the payment that would have been inflicted, had the social welfare function

been .
gZ

Note 6.2.1 Assuming all agents are truth telling, an agent’s utility from any social welfare function,
with the extended VCG payment, is identical to her utility from a system with a social welfare function

0 b
fgZ

— —

U, (0,0) = Us, (0, 6).

Definition 6.3 We refer to a mechanism which uses the extended VCG payment function as a

extended VCG mechanism, and in short: EVCG.

Lemma 6.4 Vn € N,under the EVCG mechanism, in a system with g € G, CLOSE and EARLY ,

where one of the following assumptions holds:
1. The system makes use of RN and everybody else is truth telling b_,, = 0_,,.
2. The system makes use of POST.

agent n cannot gain by declaring more than her real type.

Proof: Vé; be ON, s.t. b, > 0,, we wish to prove that given either one of the assumptions,

—

Up((6n,b—n),0) > Un(b, 6). (6.2)

Let us develop the right-hand side of equation (6.2). From the definition of the EVCG payment

function

— -

N
Un(b,0) = =T, (b,0) + Tn(b,b) — Y T i (b, b). (6.3)
k=1

95

Under assumption 1, in the same way that equation (5.3) is reached in the proof of lemma 5.1,

— -,

T (b, 0) = T (b, b). (6.4)
Under assumption 2, equation (6.4) holds due to the same arguments used in the proof of

lemma 5.6, for equation (5.7).

Substituting equation (6.4) into equation (6.3) yields, under both assumptions,
N
(b, 0) Z k(b,D). (6.5)
Now let us develop the left-hand side of equation (6.2). When assumption 1 is valid, lemma 6.2.1

means that

—

Un((0r,b-1),0) = —

] =
=

Ek((envbfn)vwmbfn))- (6'6)
k=1

When assumption 2 is valid, if agent n tells the truth, her output time may only decrease
relative to the static status: other agents, on whose jobs n depends, will decrease her output time
if an upward lie by them is revealed. A downward lie by the same agents will not change agent n’s

output time.

—

To((On,0-n),0) < To((0ns b-n); (0n, b)) (6.7)

Since according to the definition of the EVCG payment function,

—

Un((0n,b-n),0) =

{Ta((On,b-0),0) + Tu(O,b-0), (0,b-0)) } - ZTM (B b—n), (B, b_0)),

equation (6.7) means that

N
Un((0n,b-0),0) = = Ts (6, b-r), (6, b_10)). (6.8)

k=1

Using equation (6.6) when assumption 1 is true, and using equation (6.8) when assumption 2 is

true, and using equation (6.5) on both cases, we get

Un (00 b-n), 6) = Un(5,6) =
N N
> T k(O =) (O b Z k(0,B) > 0
k=1
where lemma 5.3 is used for the last inequality. |

56

6.3 An Implementation of a General Social Welfare Function
in Ex-Post Equilibrium

Lemma 6.5 Under the EVCG mechanism, in a system with g € G, RN, CLOSE and EARLY,

where all other agents are truth telling, an agent cannot gain by declaring less than her real type.

Proof: Since b,, < 0,,, RN,, (“X, Srenice, On) is performed, where the value of s;enice can be defined
by the mechanism, and A = o((by, 0-r), (bn, 0_r).
VQ_', be OV s.t. by, <0, b_,, =0_,,, we wish to find a range for s,enice S.t.

— —

Un(0,0) — Up((bn,0_0),0) > 0.

Due to the operator RN(n s Srenices an)v

T ((bns 0, 0) — T (s 0), (b) = 210

SreniceCm
where n € NA.

Using also note 6.2.1 we get

+{ T (b 0-0),0) = To(bns 0 (b 0-)) | + ZTM (bs 0—), (b 0_r)) =

N
- 0, — by
*ZTE,k(‘),)+ " ZTE 5((bn,0-1), (bn,0_y)) > 0
k=1 Srenzcecm k=1
Using lemma 5.2, we get that it is enough for s;epice to satisfy
0n — b, fAe — by, > 0.
srenlcecm Cm
Hence, it is sufficient that S,en;ce satisfies
1
Srenice S TA" (69)
S
The institution can declare a value for S,epice for every job, or take s;epice as
! (6.10)
min — .
neN fA

o7

Theorem 6.6 In a system with RN, CLOSE and EARLY, the extended VCG mechanism can

implement any social welfare function g in Ez-Post equilibrium.

Proof: Follows immediately from lemma 6.4 and lemma 6.5.]

6.4 An Implementation of a General Social Welfare Function
in Dominant Strategies

Lemma 6.7 Under the EVCG mechanism, in a system with g € G, POST, CLOSE and EARLY

an agent cannot gain by declaring less than her real type.

Proof: V0,b € OV, s.t. b, < 0, we wish to prove that

= —

Un((enab—n)’) - Un(g’) > 0

According to equation (6.1), the definition of the EVCG payment:

— —

Un((ana b—n)v) - Un(gv) =

{~Tu(00,0-0).0) + Tu((Onb-0). (O 0=)) } = D7 Tl (O b, (O b))

keN
H{105,0) - T(B D) } + > Tor(B,5). (6.11)
keN
Due to the operation of POST,,, when agent n is lying:

—

T (b,60) = T (b,5) +

L + spost + D;? (ga 9771) 2

n
+ Spost

where n € N4 | A = o(b,b). Hence,

. Ly 0, —b

Cmy

" 4 Spost- (6.12)

When agent n is telling the truth, in this system, her output time may only be decreased

(compared to her static output time), due to the revelation of other agents’ lies:

—

—Tn((emb—n)v) =

_Tn((en’ b*”)7 (9"“ b*n)) - D;;l” (9n7 b,n), 9777,) >

Tn((anv b—TL)? (ena b—n))

o8

where A” = 0((0n,b—_r), (0n,b_)). Hence,

{=Ta((On0-0),0) + T8 b-0), (B b)) } 2 0. (6.13)

Substituting equation (6.12) and equation (6.13) back in equation (6.11) we get

—

Up((0n,b_0),0) — Un(b,6) >

0, — by, .
- Z TE,k((env bfn)v (gna bfn)) + + Spost + Z TE,k(b7 b)
keEN Cma keN

Using lemma 5.2

O0n —bnp Op— by
- f;? +Spost7

Cm Cm/

where A’ = o (0, b—0), (B, b_)) and n € N4,

So it suffices that sy, fulfills:

spost > (0 — by) (L - i) > (0 — by) <f5v _ i.)

minjeapm ¢; Cm Con! Cm,

That can be accomplished using the conditions imposed in the proof of lemma 5.8.]

Theorem 6.8 In a system with POST, CLOSE and EARLY , it is possible to implement a general

social welfare function g in dominant strategies.

Proof: Follows immediately from lemma 6.4 and lemma 6.7. [|

99

Chapter 7

Mechanism Qualities: Discussion

In this chapter we evaluate the EVCG mechanisms we suggested, mainly according to the properties

suggested in chapter 4.

7.1 Limitations on Input

The RN based mechanism can deal with any set of 5, 5, and yet complete the execution of all jobs.
The POST based mechanism, on the other hand, must stop executing certain jobs, according to

either of the following two criteria:

1. 6, > Hg,ps: if at time ¢ the job has performed a total work of fg X, (¢)dt' > Hgps, the execution

of the job is stopped.

2. (0, —by) > Hyipy: if at time ¢ the job has performed a total work of fot X (t")dt' > b, +Haigy,

the execution of the job is stopped.

Using the first criterion will prevent the mechanism from performing certain long jobs at all.
Obviously, jobs with declarations larger than H,,s cannot be submitted and guaranteed to be exe-
cuted fully. By determining Hgp,s > max,cn b, in the realization stage, it can be verified that all
the truth-telling jobs can be completed. On the other hand, setting a large value of H,,s means
that spos: is increased accordingly, which in turn causes both the agents utility and the final social

welfare to decrease, in case agents lie downward.

60

Using the second criterion, every job declaration is admissible for every value of Hgy;r¢, which

therefore can be determined in advance. Using the Hg;y criterion gains scalability.

7.2 Budget Considerations

The rent the institution gets depends on the implemented social welfare function. If g2 is imple-
mented, the rent is of course non-negative, since all payments are non-negative. Some social welfare

functions may bring a negative rent though. For example,

e g= 721@’:‘/\/ (Tx 7T0)2.

o &= (1,100).
e T = 100.
o b= (100).

Under an optimal allocation A, in which N{* = {1},

N 1 0<t<100
X1(t):
0 100 <t < o0.

A is efficient, though not Work-Function-Pareto efficient. The rent is negative:

-, -, -,

Py(b) = —T1(b,b) + T 1(b,b) = —100 +1 = —99 < 0.

As we can see, the rent can be made as low as desired, by setting the desired ending time T to an
appropriate value. Note that a function which is optimized by a Work-Function-Pareto non-efficient

allocation, is not a regular social welfare function.

Theorem 7.1 If the static allocation under the EVCG mechanism is Work-Function-Pareto effi-

cient, the rent is positive.

Proof: Under the EVCG mechanism, which allocates b under the static allocation A, the institution

receives a rent of

Z{—EI?JrZEfE}:—ZE,;“—kNZE;?R

keN neN keN neN

61

where Ay, = o0 I;J_;
> Z()

We need to show that if A is Work-Function-Pareto-efficient, then

S EFSNY EM (7.1)

keN neN
Let ¢y := max,, e aq ¢ Then for allocation Ay, let us arrange the jobs on each CPU according
to length, shortest first:
N4 = [N
m,A m,A m,A
b < by T L <<L bN,i‘;
| A
NY EM»=N — NA — 1)o7t >
SEEen Y LS v et
keN meM i=1
| 1 &
N =Ny > N b,
Do = N=D b
meM i=1 i=1

where b™4% is the vector of declared lengths of the jobs in N/4=, sorted according to their order on
CPU m, under allocation As:.

On the other hand, for any allocation which is Work-Function-Pareto efficient, an agent cannot be
better off by executing her job earlier on the same CPU (according to corollary 3.3.1), neither can she
be better off by using another CPU, after its share of the work is done. Let E™4 := maxXge A El;4

denote the Ending time of CPU m. For a Work-Function-Pareto-efficient allocation A, vm € M,

b
A = LECW (7.2)
b
VEeN Ef < Em’A+C—’“

Hence, comparing the ending time of jobs to the ending time of CPU m’, we can divide the jobs

into two sets:
o 7:={k|Ey < E™A}
e and J := {k|E™A < By < E™A 4 Cb—kl}

Summing over those sets, we get

S B <NE™A 4 ! > bk

Cmy/

keN keJ

62

Due to equation (7.2), and since J C N\NZ,

Cm/
keg
el DOUEID ST) SE
Cm/ Cm/ o
keN EgN A, keJ
1 1
N - — < .
ol EDSUSSIERID SIS D SRS EPL D B
keN keg keN\WNVAN\T keN

Hence, equation (7.1) holds:

ZE,fg%NZbngZE,fE

keN M keN keN

and the rent cannot be negative.

Corollary 7.2.1 In an EVCG mechanism which implements a reqular social welfare function, the

rent is mon-negative.

Proof: Follows immediately from theorem 7.1 and from corollary 3.3.2.]

7.3 Safety Margins

A POST-EARLY-CLOSEFE mechanism only has upper safety margins. An RN-FARLY-CLOSE

mechanism, on the other hand, does have safety margins.

7.4 Justness

The POST — EARLY —CLOSFE mechanism is just, while the RN — EARLY — CLOSFE mechanism
is not. Making sure liars do not benefit from other agents’ lies, makes the mechanism able of imple-
menting a social welfare function in Ex-Post Equilibrium. Justness is what makes the mechanism

able of implementing a social welfare function in dominant strategies.

63

7.5 Individual Rationality

So far, we have ignored the agent’s valuation of the execution of her job, V,, in equation (3.2), since
we assumed an agent who submitted a declaration cannot decide to withdraw from the game.

Now let us consider allowing agents to withdraw after the realization stage. A rational agent will
choose to withdraw if V,, < T}, + P,,. The valuation V,, is the agent’s secret. It does not depend on
the rules of the game, nor on the other agents. This valuation may depend though on an alternative
CPU which the agent has at her disposal (e.g. a slow, private, free of charge desktop).

As we mentioned in chapter 3, footnote 2, it is more common in the literature to assume the
agent’s secret is her valuation of the allocation rather than the length of her job. Taking the valuation
into account as a secret brings us back to the common notion of secret: the agent’s valuation of a
good.

We propose a mechanism built on top of the proposed EVCG mechanism, using two rounds:
After stage 3, the declaration stage, agents may withdraw without paying. They do not get their
jobs done, of course. In the next round, the agents are not allowed to change their declarations: the
allocation is calculated based on the previous declarations of those who stayed. The payment for
the staying agents is based on the staying agents only. Let “” denote functions and allocations on

the second round. Then,

We wish to show that for the two-rounds EVCG mechanism:

e Indeed two rounds are enough: a rational agent who stayed for the second round, would get a

positive utility.
e Truth telling is in ex-post equilibrium.

Lemma 7.2 In the EVCG mechanism of two rounds, if agent n stayed for the second round, she

will have a positive utility, assuming everyone else is truth telling.

Proof: For truth telling agents, when all other agents are truth telling, every agent’s utility equals

gz. The set of jobs to be executed only decreased after withdrawal, so

HA HA
95 (E7) = 95 (£7)

64

— —

where A = o(b,8) is the original allocation, and A = 6(b,) is the allocation formed for the agents
who chose to stay.
Hence, every truth telling agent who stayed can only be better off, now that some agents have

retired. If participating was individually rational before,

it is all the more individually rational now,

A -, ~ -, A~

Vi, +g (EY >
gz()
Vn+gZ(EA) = Un(b,b) >0 (7.3)

Hence, there is no agent who stayed to the second round, but wishes to quit then: the maximal

number of needed rounds is two. [|

What about agents who withdrew? Could it be that it would be worthwhile for an agent to lie,

thus making it non-beneficial for another agent to stay, and improving her own utility by that?

Example 7.5.1 In an EVCG mechanism with either RN or POST, CLOSE and EARLY, it
may be worthwhile for an agent to lie, thus making it non-beneficial for another agent to stay, and
improving her own utility by that.

—

Proof: Let ¢ = (1),0 = (1,1),g = g__. Assume agent 2 tells the truth. If agent 1 also tells

\g|

the truth, U1(9_', 0) -V, = UQ(é’, 5) — Vo = —-1—-2 = —-3. If agent 1 lies and declares b; = 2,

Us((2,1),0) =Vo—1—-3=Vo—4. If 4 > V5 > 3, agent 2 would withdraw. Then agent 1’s utility

would be U;1((2), (1)) = Vi — 2, which is better than her utility from telling the truth. [|

To prevent this situation, a certain change in the output time of lying agents is required, if there

is a second round.

Lemma 7.3 There exists a two-round mechanism which allows withdrawing, for the RN based
EVCG mechanism, which is IC in ex-post equilibrium.
Proof: Assume b_,, = 6_,,. In order to make lying non-beneficial for agent n, we require:

Un((bn,0-1),0) < U, (0,6).

65

Note that the subset N depends on the declarations; hence different agents may decide to withdraw,
depending on agent n’s declaration.

A liar who withdrew is not better off than a truth teller who withdrew. Both their utilities are
zero. Let us concentrate then on agent n who lies and stays.

From equation (7.3) we know that when all agents are truth telling, if agent n stayed, then

which leads to the demand

~ T (b, 0-1),0) + T (b, 0, (bs 0-)) = Y T k(b 0-1), (b, 0-)) <
keN
- Z Ts (6, 0)
keN

In order to fulfill this demand, a lying agent must receive her output on the second round s.t. it

fulfills the following demand:

~ —

T((bn, 0-1),0) = T0((bry 0—1), (b, 0—1)) >

D Tok(0,0) = > T k((bny 0-n), (bny 0-0)) (7.4)
keN

In other words, the output time for a lying agent must be later than the output time for a truth
telling agent (of the same declaration) at least by the gain to the gZ social welfare function of the
declarations due to the second round.

In order to achieve that, the two-round mechanism can use, for example,

—

POST,(T,(b,6),

T (b,b) + § :Tz,k((an,b_), (00, b, § T (b,b),
kGN ke/\/’
0, +¢€) (7.5)

for some positive value of €. Note that this POST operator is activated on top of the regular POST

—

operator which the EVCG mechanism uses: it is activated at time Tn(g,), when the agent was

66

supposed to get her output, according to the EVCG mechanism. Then another delay is added, to

insure that when other agents are truth telling, equation (7.4) is fulfilled. [|

Lemma 7.4 There exists a two-round mechanism (which allows withdrawing), for the POST based

EVCG mechanism, which is IC in dominant strategies.

Proof: In order to make truth telling a dominant strategy for agent n, we require:

—

Up((bryb—1),0) < Up (0 0-1),6).

We concentrate again on an agent n who lies and stays.

From equation (7.3) and from the justness of the POST based mechanism,

Un(0nyb—1) (0nyb—10)) < Un((0s0-1), 0y 0-1)) < Up((01yb—1), 6).

It will suffice then to construct the mechanism such that

=

Un((bsb=0),0) < Un((0n,b—0), (B, b—0)).

which leads to the following demand on n’s output time in the second round:

10 (b, 6) — Tp, (b, b) >

> Tek((Onsbn), (Onb-n)) = > Ts(b,b)

keN keN

This demand will be satisfied by activating POST according to equation (7.5).]

Note 7.5.2 The two-round mechanisms are hardly practical. The amount of time by which the
output is postponed depends on an optimization done on (0,,b_,). Hence, while the two-round
mechanisms are IC, they differ from the single-round EVCG mechanism by requiring heavy compu-

tations to be done whenever an agent lies. Their low computability makes them less practical.

7.6 Final Social Welfare

When comparing mechanisms on all the domain O, some mechanisms are strictly better than

others.

67

e An EVCG mechanism which uses the CLOSFE and FARLY operators has a better final social

welfare than an EVCG mechanism which does not.

e When we proved that the EVCG mechanism can implement a social welfare function, we
actually defined a range for the parameters s,,5+ and syenice. When the parameters are within
that range, the function can be implemented. An EVCG mechanism which uses the threshold
values for spost OF for Spenice has a better final social welfare than an EVCG mechanism which
chooses other values, which are strictly within the allowed range (a lower value for S,enice OF
a higher value for s,0s;). The higher s,epice is, the faster downward liars’ jobs are terminated,
and regular execution continues. The lower s,,s+ is, the sooner the execution of downward

liars’ jobs is resumed.

e An EVCG mechanism which sets a different value of sp4,» for each agent according to equa-
tion (5.12), taking ¢, into account, has a better final social welfare than a mechanism which

uses one common value for all the agents, according to max,car Spost,n-

e An EVCG mechanism which sets $;enice individually for every job, according to equation (6.9)

has a better final social welfare than an EVCG mechanism which uses equation (6.10) to set

Srenice-

Setting an optimal value for Hgps and Hg; ¢y, on the other hand, is not that straightforward, but
involves a trade-off. Lowering those values enables setting a lower value for s,,s:, which makes the
final social welfare better. At the same time, lowering those threshold values means that the range
© on which the jobs get to terminate at all becomes smaller. Achieving a better final social welfare
for small lies comes at the expense of not being able to complete jobs of larger lies, as discussed in

section 7.1.

7.7 Complexity and Off-Line Calculations

The problem of calculating the best schedule is NP-hard. The time complexity of a naive algorithm
for calculating the best schedule, given the lengths of the jobs, is O((N + M)!).
We have proved here that the EVCG mechanism implements a general social welfare function,

under the assumption that the institution is indeed able to calculate (exactly) the optimal schedule.

68

It may seem that due to the computability issue, using the EVCG mechanism is not worthwhile,

but there are several scenarios in which it is practical:

1. When the typical job length is long, relative to the time it takes to calculate the allocation.

This time depends N and M, and not on 0:

> O
!
(N+ M), << >

where t.. is the time to calculate the social welfare function over one allocation, and is O(N?)
(using a naive algorithm). The time to find the optimal allocation would also decrease drasti-
cally if the cluster was composed of identical machines ¢; = ... = ¢, or of subsets of identical
machines. Subsets of identical declarations b would also make the task of finding an optimal
allocation faster to compute.

— —

2. When the variance of @ is high. Then max g1) 9(T(8,6)) — min g, ;g g(T'(6,6)) is relatively

high, and the institution can gain a lot from a truth revealing mechanism.

3. When © C N, in a repeated game, it is possible to remember the optimal allocations for

certain sets of declarations.!

In all those cases, the calculations needed to find the optimal allocation end before the beginning
of the execution (off-line scheduling). The job control tools do not require any calculations. Thus,
even if agents lie, the dynamic allocation is known at once: the cluster needs not halt and wait for

decisions when a job control operator is activated.

7.8 Practical Limitations on the Implementation

When coming to implement the mechanism we suggest in this work, one may encounter several “real

world” problems:

1. The mechanism requires monetary transfers. In order to implement that, the agents are
required to be economic units. If they work for the institution which owns the cluster, this

may not be the case.

1Thus replacing the complexity of calculating the optimal schedule with memory complexity.

69

2. The mechanism we suggest counts on the institution’s ability to enforce the optimal schedule.
In real life, this ability may be limited, due to the agents having direct access to the cluster. If
the agents have direct access to the cluster, the strategy of reporting the job’s true length and
submitting it to the institution for allocation may be inferior to submitting the job directly to

a CPU of the agent’s choice.

70

Chapter 8

Summary

In this work, we presented the problem of Off-Line Cluster Scheduling, where the institution has the
ability to set the allocation of jobs to CPUs, but it does not know the jobs’ lengths. The institution
also has the ability to affect the allocation in a limited manner after the execution has begun, using
job control tools. The agents, each owning one job, have a certain utility from the completion of
the execution of jobs, as well as from monetary transfers. The institution has a utility from the
completion of the jobs, which is a social welfare function.

We devised a mechanism, in which the agents’ best strategy is telling the institution what the

real length of their job is. We formulated two variants of this mechanism:

1. A mechanism which uses the job control tool POST, and implements a general social welfare
function in dominant strategies. This variant is just, but it only has upper safety margins, and

it poses limitations on the input.

2. A mechanism which uses the job control tool RN, and implements a general social welfare
function in Ex-Post equilibrium. This mechanism has safety margins, and it does not pose any
limitation on the input, but it is not just. This mechanism is more suitable to a situation where
the agent herself does not know exactly the length of her job, but instead she has distributional

information over it.

We also proved that both monetary payments and verification using job control tools are essential

in order to implement a social welfare function. A mechanism similar to what we suggested, only

71

without monetary transfers, will not implement even the “sum of utilities” function. A similar
mechanism which uses monetary transfers, but does not use the job control tools in order to verify
that the agents are truth telling and punish them otherwise, will not implement that function either.

The mechanisms we suggested are not IR. There exists another mechanism in which agents
can withdraw before paying, which implements a general social welfare function. In a variant of
the mechanisms we suggested, we enable the agents to withdraw from the game once they know the
price they will have to pay. This variant is individually rational, and still implements a general social
welfare function with the same level of incentive compatibility, as the original variant it sprung from
(either RN or POST based). This mechanism it includes on-line calculations of a schedule when
agents lie, though, in order to determine the severity of the punishment.

The rent in those mechanisms is non-negative if the static allocation is Work-Function-Pareto-
efficient.

In this work we proved that it is possible to implement a general social welfare function in the

off-line cluster scheduling environment, by supplying a family of such mechanisms.

72

1]

[5]

References

A. H. Abdekhodaee and A. Wirth. Scheduling parallel machines with a single server:

some solvable cases and heuristics. Computers and Operations Research, 29 (3), 2002.

A. V. Ackere. Conlflicting interests in the timing of jobs. Management Science, 36(8),
1990.

A. V. Ackere. The impact of conflicting interests on the choice of an appointments system.

Belgian Journal of Operations Research, Statistics and Computer Science, 31 (3-4), 1992.

E. Altman and N. Shimkin. Individual equilibrium and learning in process sharing sys-
tems. Technical Report CC212, Department of Electrical Engineering, Technion, October
1997.

Y. Azar and L. Epstein. On-line scheduling with precedence constraints. In Proc. of 7th
SWAT, pages 164—174, 2000.

M. Azizoglu and O. Kirca. Tardiness minimization on parallel machines. International

Journal of Production Economics, 55 (2):163-168, 1998.

A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed Operating System, Load

Balancing for UNIX, volume 672. Springer-Verlag, 1993. http://www.mosix.org.

A. Barak, O. La’adan, and A. Shiloh. Scalable cluster computing with MOSIX for LINUX.

In Proc. Linuz FExpo '99, pages 95-100. Raleigh, N.C., May 1999. http://www.mosix.org,.

R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a resource man-

agement and scheduling system in a global computational grid. In The 4th International

73

[10]

[11]

[15]

[16]

[17]

[18]

Conference on High Performance Computing in Asia-Pacific Region (HPC Asia 2000).
IEEE Computer Society Press, USA, May 2000.

E. Clarke. Multipart pricing of public goods. Public Choice, 18:19-33, 1971.

L. Cons, K. Berry, O. Bachmann, et al. Bash reference manual: Job control.

http://www.gnu.org/manual/bash-2.05a/html_chapter /bashref_7.html.

B. Dodin and A. Elimam. Integrated project scheduling and material planning with

variable activity duration and rewards. ITE Transactions, 33 (11):1005-1018, Nov. 2001.

J. Du and J. Y.-T. Leung. Minimizing total tardiness on one machine is NP-hard. Math-
ematics of Operations Research, 15:483-494, 1990.

B. Falsafi and M. Lauria, editors. REXFEC: A Decentralized, Secure Remote Ezrecution
Environment for Clusters., volume 1797 of Lecture Notes in Computer Science. Springer,

2000.

D. G. Feitelson and A. M. Weil. Utilization and predictability in scheduling the IBM SP2
with backfilling. In 12th Intl. Parallel Processing Symp., pages 542-546, 1998.

T. Groves. Incentives in teams. Econometrica, 41:617-631, 1973.

J. C. Harsanyi. Games with incomplete information played by ’‘Bayesian’ players. Parts

i-iii. Management Science, 14:159-182, 320-334, 486502, 1967-8.

R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Bundling equilibrium in
combinatorial auctions. mimeo, Technion, http://iew3.technion.ac.il/ moshet/rndm11.ps,

2001.

L. Hurwicz. On allocations attainable through Nash equilibria. Journal of Economic

Theory, 21:140-165, 1979.
U. Kjems. Jobd. http://bond.imm.dtu.dk/jobd/.

D. A. Lifka. The ANL/IBM SP scheduling system. In D. G. Feitelson and L. Rudolph,
editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing, pages 295—
303. Springer, Berlin Lecture Notes in Computer Science LNCS 949, 1995.

74

[22]

[23]

[24]

[25]

[26]

[29]

[30]

[31]

[32]

[33]

[34]

M. Livny et al. Condor - high throughput computing. http://www.cs.wisc.edu/condor/.

A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory. Oxford University

Press, 1995. Chapter 23: Incentives and Mechanism Design.

J. A. V. Mieghem. Dynamic scheduling with convex delay costs: The generalized cp rule.
The Annals of Applied Probability, 5(3):808-833, 1995.

K. Mount and S. Reiter. The informational size of message spaces. Journal of Economic

Theory, 8:161-191, 1974.

R. B. Myerson. Incentive compatibility and the bargaining problem. FEconometrica, 47

(1):61-73, 1979.
P. Naor. The regulation of queue size by levyying tolls. Econometrica, 37:15-24, 1969.

N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior,

35:166-196, 2001.

D. Nowak. ASCI at Livermore- Alliances. http://www.llnl.gov/asci/alliances/. U.S.

Department of Energy under Contract W-7405-Eng-48.

J. Root. Scheduling with deadlines and loss functions on k parallel machines. Management

Science, 14:460-475, 1965.

J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: An economy driven job
scheduling system for clusters. Technical report, The University of Melbourne, July 2002.

http://www.cs.mu.oz.au/ "raj/grids/papers/libra.pdf.

J. A. Stankovic and I. S. Sidhu. An adaptive bidding algorithm for processes, clusters
and distributed groups. In Proc. of 4-th International Conf. on Distributed Computing
Systems, pages 49-59. IEEE Computer Society, 1984.

W. R. Stevens. Advanced Programming in the UNIX Environment. Addison Wesley

Longman, Inc, 1993.

A. S. Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall, Inc.

Englewood Cliffs, New Jersey 07632, 1987.

75

[35] L. Torvalds et al Debian GNU/linux - the universal operating system.

http://www.debian.org/.
[36] L. Torvalds et al. Linux kernel. http://www.kernel.org/.

[37] W. Vickrey. Counterspeculations, auctions, and competetive sealed tenders. Journal of

Finance, 16:15-27, 1961.

[38] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason. Auction protocols

for decentralized scheduling. Games and Economic Behavior, 35(1):271-303, 2001.

[39] D. Wiltzius. Proposed 2000 and 2001 Livermore computing services to ASCI Alliance sites.
http://www.llnl.gov/asci/alliances/services_to_alliances.html, 2000. U.S. Department of
Energy under Contract W-7405-Eng-48.

76

n7¥22 01995 R NPERIIDY 08N

0 awnn S19wR Sw Mpn ndan 1T

1IMAR 737K

17T D792 DD AN NPERIIDY 073N

02awnn P1OWR W Mpn nban

PN DY NN

NI TVAPY TN TV 5PN NN DYDY
DYTIY WO
TPVINY NPPONRTIN

TIMAR F1379K

INISY MNONOV NON — PIDVLN VIDY YN
2003 INY29 non Y'OUn N YN

YPOYTIMMD I 7T NOITNA NWYI PNRN
VY NPVRNN2 TPNTN-PIAN 1INNN NNONI

TN HI0N

92ya TN

72Ya DTN

0%3°3y 1990

X o3I 78PN
xii 0°omo nnwn
XV 0°IWDIR NPTWI
1 anIRen 1
2 N DAY MT 1 oNnn - L1

4 nmwp nImay 2
B OTPM PR OPHYN 21

B MNP 211

B NN 212

S POPN-P'PM WM WoN aon 213
P oDNMOPHYN 22

S TN 221
T PPV IOON 222

B e omNn-N 223

b e D2AYNN DDWUR SW 1IN KUY DY PSRN 2.3

B e MmN 231
728 MPNR ORI R 232
7228 PN PR 233
72 MND NN 234

8 e D902 NNAYN D9510N DMPN DI 235

vi

21

21

21

26

27

28

28

28

28

................................... NN MOVONN MDAP 236

"M 3
... TN MAN 31
.. TINSPN 311
... mr»w 312
.. mMaya VYYD 32
............................. MY NOVWDY 730 MPINILVIN - 321
........................... MMIAYa NOWYY 30 PPV NN 322
... OMN NPSPNS 33
.............................. DIPNYN DV TOVINN NPSPNY - 331
.. ™HMIN MY 332
....................................... P DWW WD NINT 34
..................................... YA TN INT 341
.. POMN - 35
... oOYHN 351
.. PLLD NNYPN 352
...................................... NOYY I NPRN - 35.3
... VNN 354
... TMLIVON 36

Q°DTIVIN QOINAIN 4
... D¥IINY NPNN 4.1
.. DVIPNONPOY 4.2
... PO 43
.. YIP PN 44
.. MmN 45
................................. VPN 2 MDD ITYN -NNONON 46
... A0 PN MM 4.7

vii

38

38

38

39

40

40

43

43

43

44

51

53

53

54

57

58

60

60

61

63

63

64

67

68

69

71

73

n°"nan anma NPERIe bw v mapn 5

................................ DM PINIP PN DY DY Pnn - 5.1
.. mIPN 511
................... DXAYNN SPWUN JY DTPM P MY Y'Y pdm - 512
... T NI DN 5.2
.......................... 1 YPTIDONT PV PIYD mn 5.21
.......................... 2 PTIDONT APV PIVD MmN 5.2.2
....................................... mMMIaya POV LN Y 53
................................... D>720N DWNYN N 531
............................. gZ TPNPNON DY DO DIDW» 532
.............................. NN TN NPADON MDD ONXN - 54

%% n°nNan AR YYD 6
.. mIPn 61
.................................... M"Y ANMON YPI NN 62
................ TAWTA SPWN WA TP99D PN NN TOYPNI SW DIW» 63
................ MOV NPILIVONA TPH9 TPTNAN NN TIPNPND IV DW» 64

1177 00330 IR 7
.. VPN Y MY 7.1
.. DIPN OV 72
... PV W 7.3
.. mmn 74
... VION YOIV 75
.................................. PMDN NRYPNA TPTNAN NN 7.6
.................................. DMPN N9 DA PNV 77
.................................... DWON 9Y NPV MO 7.8

o 8

nMpn nnvw9

viii

PN

8PN

2N ARWA VA T NTIYN I TNND Y¥ID TINN 2N NTAY ¥ DPIPNY 1900ND TINN 935
RYD) DVURD .DAYNND 21DUN -0 191X DONND ,MNY MNNY Y51 DXTayN 190100 157N
IPIPNY NN DY S0 YN NN YNID TMIPHY YOY WY NTIAYN N 010N TOM YW IMoyaa
N2 N2V 2NN NTIAYN V29N N2AP PRY 523 MINPY 19N NTIV TMIPNHY DY NONNN

NN NN DIMIPNHYN MOIN SV 155 TPNIAN NN TP 1NN INDYIN NN 2520 NN TOMN
927 23 DDD DX WIND NI NYY TOMN SWYND DOAVNNN DY MTAYN P T DY 1D MUY
NYAP 213t DY RNV PNPND 53 N L1V NDAP 23Dt TYID) NP IMNMNRNDN VIIN NP YAt NN VYN
NYT2 TOMN 2¥ 22V NN WY YTOW NN TPYIN THNOUN 1NV DMOUNM NIPHYN SV V79N
MY PRY YN -2WNN ITIY SY OTIIND 19N NN

MTIY DV OTNINRD PN IY PNINND MO TYN IPIPNYN 0N IWR DNNMIN DV NNAWN DIWNND DN
T2 TNVN TMTIYY AVUNN YAt DY RSP PRY 2T VR MINNNA WHNYN TOMNY Twa 1oYW 2NN
MTIAYN MY DIV DMYVYNI N D1 PR DINNIN INYII TPIIIN NN IVXPND 239010 XiNY
9% PMIPYY IMIDN NVLXY NIN MTIAYA DYDY 1D NN ToNNI MTIAYA DYDY 19 HY DM 1N
TPON N NRYPNIN DR ONWHRN NVIOY 35 MNANT DM VYN IR DY N TPTIONTIN NRSPN
2V PON TVPN ,CPMNT) NP INNND YRD IVNDN NTIAY TYHN SW IPNT TINNIODN NTIAY SV NI
N2 DY NPID WL CTIVPN) TAYHN MY TILPN NI IVNDN NTIAY YD NN TN
OTPM Y2 V9N I .CNIND”) NP INND YR YTYNY MTIAY SY OTPI NI > 5y Taynn SV
VXY Y932 NENT NN, "NNTPN" NTIAYN DY DPYDN YA INY 0TI RO 121D TR, POINND 13 INY
NVYWWN Y93 Y30 GMWNN TINK N R NIWNN VTN DMWY NVWN 99 VKN NYAP SI TN NIVHN
IPWN WA PTY (DAL NRSPN TINOYA TINNTI) DX DXANSNL DID DIRY NI Ty
JOR NVDVY YD1 WNNWND TNN PR

AR XY NN TIND O "D PIRIP 22 DIVYUN SY NININI M2 DI DX NN DVVRN

TIXPND DX TOWN 2790, MLV NMMLIVOXRL MONINN DD TMXPNI NX DY»NH MY M0
N2>202Y NYIN 7PIMNIN DV MONNN DIDD 29 DY NNX TPIPNY SV DVVNN NX Y1571, M2INN DO
SV HONNRD PN DMON NPNZ DNR TIPNY W NNOMNN MMIVY DAWNNN 1DUNR SV MNjPNn RN RN
A5V MW NV NN WP, MTIAYN NN TONNA P N2INN IWN VD YR ,MPIMIIN DV M7y
L(MIVPN NV TAYIN MY MVPNL THRD DWHANYN 0N TPNIIY DIPOYN DNNINN MY M
P99 DAY TNEPNG DWMY XTI 1 NIV PYND XTI (MHT NN NTIAYN WA TUNN NIPNTI 2V

INAD JOWNA ¢ TPIPNY NNOYNY DVVNN NX ¥1IPY DWSN DN T2 DWY X" mown T PR

N
=T + Z T i
k=1

TOMN NI IIPIPNVN 22 DV JIPIMINSNT DRNN WRID 2AWINKDN V29N N2 19 X AN T; IWND
YR IPIPNVN 1900 NN XN N 2909 MIXIIW NNNIN NPIPND NN NIWIN TWUN NIRYPNIN NN NN
PN INNSD YMNR NIY D, 099N NIR NYAPN & TPIPNY DTN 12 URID AVINKDN YRN TN I8»0 T,
PINDP P DVYN DYA M DYWN D100 DN I =~ oo T NN TOXPNY NN 2N TOWN
PINN PON AP PINND 20 XN PRI 1P DVYN NN MR I 00PN "IN 027N
TPNPNON 29 DY AVINKN VIIN NP YA PA WIDNN DY NN NN PON 2NPRN V') DDVNY DM
.gZ TPNPNON NN 21D TOWN PN 12 AVINNN V9N NZAP PR PAT , 2991 PR TOWNY

I¥P NTIAY DY OTIHIND NN 2D 7ANDN DX NN N DPORN NN MY DOV 9D NN
MY DT YNIANND TAYH MY MPTONN MTIAYY IWARD XTI "NPID” 200 S¥91 NN NONNN
W TPNT DN P2 TAR YOI NN NINNND MY TN NTIAY SV ITINND NOMN 2D 7INDN DX
oY MOMN DY YT NPNNN MIPNVYN 2D 1ANDN DX DIV XY TR 119N O»PN 29 DY ,"Mopn”
DMWY 2901 OTPY NZNN VX MIAYT PIPNY DY INTIAY ORY T2 ,"INTPN" 2290 D¥am ,NTavn
790 T2 NN N

IIINN Y >IN NIPRN NNXY NN PYNRN YR DIPI0M)D 1900 DY DNRD DINI WK DINNIN
MY P NIV IR TIVIW MIVIVON XN, TPD7I NN TIOXPND DYMN TOMNY T JINN IPHN OND
TPIVIVORN THID N VIPIY IPIPNYI ORTI DX TAWTA JPYN MW IINNDI NIVIVORN) TawT Jpwn
TPNPN DWHND IPNTN NI 1NV MMIAYN DV JiPINRL MDD RID NPIPNYN IRV MLPN 1N
AT SPYN MV NRYIR NILPNN PNNY T MO I”NLIVONI 17D NN

PWY NORD IPINT DN TIPEPND MY . DMIUNN NYIAP 19N 97 12100 MO0 DPNN PON
TOMN DY PR I MIPT 1P NP I MINKRD W DRI NI NPIPNYN NNK DV NNOWIN IWND D7)
NN NN OMPY >T2 02 WP

xi

P9 WANWYNN P2 MY OIMRND P> XD V9N NYAP I D 12 NV PN PNID RN DPNTN PN
D IR MVPNN PN TPNONNNN NNYPNN

TNTN NN H9VY HNOX NIN NI NTIAYN NN DY NN YD 1IN NN PR :DONON NMILPNN NN
NOIN MTIAYY INX) DION GOY 12¥N MWW NPIPHY 7290 NPT ¥1APY TOMN DX 27NN WM
999 W¥ KD JPMTIAYY T2 WIYNY MIANN (NR qONn

AP INIIN MY, TPIPNY DY NOVINN TMKPND MPXT NN NI YW NNV SO YW DNHYN
MDYN ¥ PNV INVWI NNINSNN NIV TPIPNY NI DY NTIAYN W STINRD NN 2D 71N0N IWNRD
MY N2 IYITN NTIAYN TN TN 2170 SN2 YR MPRNN YISy IPIPHYN YR NN
NTIAYN SV NIMN YR PXI OTYI 19N NP TPIPHYN NONTIV NP THR TN DO IPNTN
DY MUN PNV SO MMYY MVPNN NHID NN DY NN

DOYSIIN DNNINN 222 DY NMAY NIVORND | NTY WRID DT 1R DNNID NNOYNI DY
TN M YITIN DIVUNN 2D IMRIA PHVHN 10 MWD IMIPNYY AN IWUNR A0W-YT WTN N0
2PYN MY MILIVONY ,"NAPHT'TN DDIIN 2AVW-TTN NN NV MIVIVON PN THBN NPHRY T
IUND VOON NVAP PR TPONT DV WY NOYINL TNS VW1 ,"MLPN'N DDMIN A5W-1TN ININI TawTa
MOTN OM NOX WK YAPIN 1900 T IPN IPNTH NN 2A0W-1TN NN MWD PY NN
MPPYY MIIPNYN DY NTIAYN SY SNNND NINN DY TANDN 1PAVN NIRSPN NN DY DIAWPN
JMTAYA NVOY YY" TN 25 YT IINI LAY NIZW NN NOXIN M TN

TOMN HY NOYINN IMEPND D) ROX ,TOMN NPNI DOV TT0 P NPR INNIN IMEPNIWY NN
DIINENA MPYN W) N TMPNHYN 13 NP X INKR TWRD D) NWI MYNYN YWY 1IN NSy
DOV DN SYND DINK WRA | NPNIN NP DXV NYNINN NNSYNN TN DHIDH DN
DYLPN WK WK DDTY ,"MLPN" 22N NNXY DY PXI NNO 7NN "NNTPNM "NPID” D1 vy
PO IV 72PN WX IPYN 9D P WP NP "TPNT' 70N NNSY MV . TaYNRN NNSY DX N9
TUNN NN DMT YR DI DDTY IP G0 NIY NIVITIN NTIAYD MND 902 W ,POVNY NTIAYN
OVOND 990 DT YRY NTaYN

PYSNY 19N MTIAYA NVDOVN 292 NOYON INPN IV DIWSN NRY DNNINN OPON 2DWN TN 9N
PNV D3 DR OGN D200 DXANNDA TPNTD SNJ2 NPNY NN NPHRRD O OPDYN Noap N2O
YR VAPV 92 RON 505 DOYOI DPN NOOOY 12 IUND X' 0mDWN NHAYN JIIN NYNAYT MINKD
RN IMRD NN GR NN, TN 93 DY PIva 9701 DINIWN DITAYNI MTAYN NN NN

xii

