
INCENTIVES AND GENERAL

WELFARE FUNCTIONS IN THE

OFF-LINE CLUSTER SCHEDULING

PROBLEM

Orna Agmon

INCENTIVES AND GENERAL

WELFARE FUNCTIONS IN THE

OFF-LINE CLUSTER SCHEDULING

PROBLEM

Research Thesis

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science

in Applied Mathematics

Orna Agmon

Submitted to the Senate of the Technion — Israel Institute of Technology

ADAR I 5763 HAIFA FEBRUARY 2003

The Research Thesis Was Done Under The Supervision of Dr. Rann Smorodinsky in In the

Interdepartmental Program of Applied Mathematics

Acknowledgment

English Thanks

This Thesis is dedicated to the dedication of deduction.

Contents

Abstract x

List of Symbols xii

List of Operators xv

1 Introduction 1

1.1 The Scope of This Work . 2

2 Related Work 4

2.1 Off-Line Scheduling games . 4

2.1.1 Nisan and Ronen . 4

2.1.2 Van Ackere . 4

2.1.3 Wellman, Walsh, Wurman and MackKie-Mason 5

2.2 Queuing Games . 5

2.2.1 Naor . 5

2.2.2 Altman and Shimkin . 6

2.2.3 Van Mieghem . 6

2.3 Variations On The Cluster Scheduling Problem . 6

2.3.1 Migration . 6

2.3.2 Off-Line Scheduling . 7

2.3.3 On-Line Scheduling . 7

2.3.4 Backfilling . 7

2.3.5 On-Line Schedulers Which Involve Monetary Transfers 8

vi

2.3.6 Distributed Decisions . 9

3 The model 10

3.1 The Primitives . 10

3.1.1 Allocations . 11

3.1.2 Efficiency . 12

3.2 Job Control Tools . 14

3.2.1 Intuition For Job Control Tools . 15

3.2.2 Formal Definitions for Job Control Tools . 16

3.3 Utilities . 21

3.3.1 Agents’ Utilities . 21

3.3.2 Social Welfare . 21

3.4 Motivating Example: A Straightforward Implementation 26

3.4.1 Example: The Need for Information . 27

3.5 The mechanism . 28

3.5.1 Prices . 28

3.5.2 A Static Allocation . 28

3.5.3 Job Control Triggers . 28

3.5.4 The Game . 30

3.6 Strategies . 31

4 Desired Mechanisms 33

4.1 Incentive Compatibility (IC) . 33

4.2 Budget Considerations . 34

4.3 Safety Margins . 34

4.4 Fixed Prices . 35

4.5 Justness . 36

4.6 Scalability- Limitations on Input . 36

4.7 Final Social Welfare . 36

vii

5 A Special Case of a Social Welfare Function 38

5.1 The Vickrey-Clarke-Groves Mechanism . 38

5.1.1 Introduction . 38

5.1.2 A VCG Mechanism For Off-Line Cluster Scheduling 39

5.2 Hypotheses and Counter Examples . 40

5.2.1 The Light VCG Mechanism: Counter Example 1 40

5.2.2 The Light VCG Mechanism: Counter Example 2 43

5.3 VCG and Job control Tools . 43

5.3.1 The Harsh Punishment Mechanism . 43

5.3.2 Other Implementations of the g
∑

Function 44

5.4 Are Monetary Transfers Really Needed? . 51

6 A General Social Welfare Function 53

6.1 introduction . 53

6.2 The Extended VCG (EVCG) Mechanism . 54

6.3 An Implementation of a General Social Welfare Function in Ex-Post Equilibrium . . 57

6.4 An Implementation of a General Social Welfare Function in Dominant Strategies . . 58

7 Mechanism Qualities: Discussion 60

7.1 Limitations on Input . 60

7.2 Budget Considerations . 61

7.3 Safety Margins . 63

7.4 Justness . 63

7.5 Individual Rationality . 64

7.6 Final Social Welfare . 67

7.7 Complexity and Off-Line Calculations . 68

7.8 Practical Limitations on the Implementation . 69

8 Summary 71

References 73

viii

Hebrew Abstract x

ix

Abstract

Several agents wish to execute one job each on a cluster- several computers which are a resource

owned by an institution. The job’s length is a secret known to the agent alone, and the agent’s

utility is the negation of the time in which she gets the output of the job. The institution would like

to maximize a social welfare function over the agents’ utilities by scheduling the jobs on the various

computers. For example, the institution may wish to minimize the sum of times in which the agents

get the output from their jobs, or to minimize the output time of the last job to come. The problem

is that in order to act optimally, the institute must know the true lengths - an information it does

not posses.

We construct mechanisms in which the agents prefer to tell the institution the real length of their

jobs, while the institution maximizes a general social welfare function. Those mechanisms involve

both monetary transfers before the execution, and implementation of job control tools during the

execution. A job control tool is a certain algorithm for altering the initial allocation. Examples for

such tools are postponing a part of the job for later, or lowering the share it gets of the CPU.

x

xi

List of Symbols

Symbol Meaning

OLCS Off-Line Cluster Scheduling

CPU Central Processing Unit

N number of agents, also number of jobs

M number of CPUs in the cluster

M a cluster of M CPUs

~θ vector of real job lengths

Θ job type space

R+ positive real numbers

~c vector of processing power

A allocation

N set of jobs of size N

NA
m set of jobs which are executed on CPU m under allocation A

XA
n (t) work function of job n under allocation A at time t

XA,m(t) usage of CPU m under allocation A at time t

A the set of all allocations

FUL(~θ) the set of allocations which fulfill ~θ

~T output times vector

~BA beginning times vector under allocation A

~EA ending times vector under allocation A

Q status

EFF the set of all of the efficient allocations

EFF (~θ) the efficient allocations which fulfill ~θ

xii

Symbol Meaning

~b vector of broadcasted declarations

Q(t) dynamic status at time t

Qfinal, Q(∞) final status

Q(0), Qstatic static status

~L vector of termination signals

Qm the status of CPU m

s′ a time in which the CPU is assured to be vacant,

which is at least as large as the original POST parameter

tfirstsplit the first time a split job on the CPU resumes execution

Un utility of agent n

Vn agent n’s valuation for the execution of her job

~P (~b) vector of price functions, which the agents pay the institution

g social welfare function

G the set of regular social welfare functions

ÑA
m the set of all the jobs on CPU m which are not a segment in time of value 1

ÑA
m,n the set of jobs on CPU m which are active while job n is active

i(k) an ordinal number of job k within set ÑA
m,n

si(k) the amount of CPU time job i(k) got while job n was active

ÑA
m,n

srenice percentage in the RN operator

spost time in the POST operator

FA
n job n’s dependents

fAn job n’s dependency number

o(~x, ~y) an allocation which is an outcome of

a mechanism, when the declarations are ~x and the real types are ~y

S strategy

Θ̂ range of real lengths

g
∑

the social welfare function which is the sum of utilities

Wn utility of agent n in other environments from the allocation itself

xiii

Operator Meaning

V CG Vickrey Clarke Groves

E
Q−
n time in which job n is supposed to end,

according to the status prior to that time

Z a mechanism

~T (~b, ~θ) the vector of output times

as a function of the declarations and the types

~U(~b, ~θ) the vector of utilities

as a function of the declarations and the types

S−n the strategies of all agents except agent n

b−n the declarations of all agents except agent n

θ−n the types of all agents except agent n

dn(θn) the distribution function of the length of job n

~TΣ ~T in a system which optimizes g
∑

~UΣ ~U in a system which optimizes g
∑

o
∑

o in a system which optimizes g
∑

NA
−n the jobs on the same CPU as job n, excluding job n

Qk,− the dynamic status

at the time in which job k begins its execution

DA
n (
~b, θ−n) the possible gained time

EV CG Extended Vickrey Clarke Groves

Hdiff a limit for the downward lie, according to equation 5.13

Habs a limit for the real type, according to equation 5.14

makespanl the makespan function of order l, according to definition 6.1

msl the makespan set of order l according to definition 6.2

lexicalmax the lexical max function according to definition 6.2

Em,A the ending time of CPU m under allocation A

N̂ the subset of N which chose to stay for the second round

xiv

List of Operators

Operator Meaning

ESn(r) operator “extended stay” for job n of time amount r

RPn(s, r) operator “reduced power” for job n to percentage s from time r

GAPn(r, s) operator “gap” for job n from time r until time s

RNn(s, r, θn) operator “renice” for job n

from time r to a percentage s until it performs a total work of θn

CLOSEm(r, s) operator “close gap” in computer m from time r until time s

POSTn(r, s, θn) operator “postpone” for job n from time r to time s

and let it continue until it performs a total work of θn

EARLYn early release of job n

xv

xvi

Chapter 1

Introduction

Let us examine an institution oriented at producing HPC (High Performance Computing) calcula-

tions. HPC calculations are characterized by long processing time, and no interactivity1. The people

who send these computations are either workers of that institution, or outsiders who get the privilege

of using the institution’s resources. Those resources, which used to be composed of a mainframe2

computer, are composed nowadays of a cluster of commodity personal computers (PCs): several

PCs, with a common controlling center, which supply together the necessary computing power.

Each worker has one job to submit to the cluster, which may be composed of computers of

varying strength. The cluster’s qualities are known to the person submitting the jobs, but each job’s

length is the private information of the person who submits it. Though in the world of computer

science, those workers would be referred to as “users”, we shall use the term “agents”, taken from

game theory.

The agent’s interest is that the job be finished as soon as possible: her utility from the completion

of the job increases the sooner the job is finished. On the other hand, the institute has other interests,

some of which may collide with those of the single agents. This institutional interest is often referred

to as a social welfare function.

One example of an objective of the institution may be minimizing the sum of times in which all

jobs end. Another would be minimizing the make-span3 of the jobs.

1Some HPC calculations require a certain amount of interactivity, with long gaps between the interactive modes.
One may look at them as several sequentially dependent calculations.

2Mainframe: a single, very strong, machine, which is usually shared among several uses at a time.
3Make-span- the time difference between the beginning of the first job, and the ending of the last. Also see

1

The classic problem that computer scientists and operations research scholars have treated is the

computational difficulty of solving the optimization problem. For example, Du and Leung [13] prove

that the off-line4 scheduling problem, when the lengths of the jobs are known, is NP-hard. Others

give procedures for reaching good results on specific cases. For example, Root [30] gives a procedure

for off-line scheduling of multiple jobs on parallel machines with a common due date. Azizoglu and

Kirca [6] give a heuristic algorithm for a similar problem, with different due dates.

However, this study looks at the off-line cluster scheduling problem from a different perspective,

which results from the potential collision of interests among agents and between the agents and the

institution.

1.1 The Scope of This Work

In this work, we assume the institution is capable of choosing an optimal schedule (a schedule which

optimizes the social welfare function), given the exact lengths of the jobs. In subsection 7.7 we

discuss the circumstances in which this assumption is valid.

We concentrate on designing a mechanism in which an optimal course of action for the agents is

to reveal the length of their jobs, while the institution maximizes a general social welfare function.

Thus we guarantee the maximization of the social welfare function. We design this mechanism using

monetary transfers between the institution and the agents, and job control tools which change the

allocation dynamically in a limited manner.

We limit the discussion to off-line scheduling, which means all the jobs5 are available at time

zero. Furthermore, we assume that the institution is able to control the execution of the jobs

completely. The only actions on behalf of the agent are reporting the (not necessarily true) length

of the job, and supplying the job.

The rest of this work is constructed as follows: In chapter 2 we refer to related work. In chapter 3

we describe the model, define the terms of allocation and job control tools, and the mechanism

definition 6.1 for makespan0 and in Abdekhodaee and Wirth [1].
4off-line scheduling means the lengths of the jobs are all known at time 0. This comes as opposed to on-line

scheduling, which means that jobs may be submitted while other jobs are being executed, as part of an on-going
process. Different scheduling methods are discussed in section 2.

5for the current batch in which we deal. New jobs which are submitted, are performed in the next batch. We assume
no interaction between those batches, i.e. jobs from a prior batch are not processed anymore after the processing of
the current batch has begun.

2

derived from them. In chapter 4 we list several characteristics of desired mechanisms. In chapter 5

we implement a special social welfare function using certain combinations of job control tools and

monetary transfers. In chapter 6 we extend the mechanism to implement a general social welfare

function. In chapter 7 we discuss the quality of the proposed off-line cluster scheduling mechanisms,

and we conclude in chapter 8.

3

Chapter 2

Related Work

2.1 Off-Line Scheduling games

2.1.1 Nisan and Ronen

Nisan and Ronen [28] present a problem where the agents are the CPU owners, whose interest is to

do as little work as possible. The mechanism is required to allocate certain tasks to those agents.

The CPUs are not related.

The authors propose various approaches for solving the problem of minimizing the makespan.

They approximate the makespan welfare function using the minimal work welfare function, prove it

is a tight bound and use randomness to improve that approximation.

They insert monetary payments after the execution, thus enabling the institution to verify how

long indeed the jobs took on that specific CPU. Since this mechanism requires an exponential

computation time, they provide an approximation for a sub-case of the problem: Nisan and Ronen

also prove that for bounded types, their mechanism approximates the optimal value for the social

welfare function, even if the institution only approximated the optimal allocation.

2.1.2 Van Ackere

Van Ackere [2] presents a game between an institution (which is also the scheduler) and any one

agent. She deals with the problem of scheduling operation rooms in a hospital, when the real length

4

of operations is not known. The game she describes is held between the institution and any of the

agents, who are the surgeons. The surgeon may arrive to the surgery later than scheduled, partly

due to intentionally being late, and partly due to uncontrolled reasons. The surgeon’s secret is the

time in which he intended to arrive. The institution’s utility decreases the later the surgeon is,

relative to the time in which the operating room is ready. The institution tries to determine the

proper time to schedule the operation.

In another work, Van Ackere [3] analyzes the strategies of a client and a dentist in two scheduling

systems. In the first, the dentist performs the diagnosis and the treatment in one sitting. In the

second, the dentist schedules two appointments, one for each of the tasks. While the diagnosis is

of known duration, the treatment’s length may vary, and it depends on the diagnosis. Van Ackere

shows that there exist combinations of costs to the agents, a choice of a scheduling system, and a

choice of arrival times, such that both agents would be better off in another combination (which is

not in equilibrium).

2.1.3 Wellman, Walsh, Wurman and MackKie-Mason

In [38], Wellman, Walsh, Wurman and MackKie-Mason deal with an environment of one machine,

on which time-units (time slots) need to be allocated to agents. Each agent has one job to process,

for which several time units may be required before a deadline. An agent’s utility from performing

her job is her private information.

A solution (which is combined of an allocation and payments) is evaluated ex-post, according to

the sum of utilities of the agents and the value of time slots which were not allocated. The authors

present a decentralized market-inspired protocol for reaching solutions in this environment.

2.2 Queuing Games

2.2.1 Naor

Naor [27] was the first to compare individual optimality to social welfare in a queue based on the

FCFS discipline, and to use payments, in order to implement a social welfare function.

5

2.2.2 Altman and Shimkin

Altman and Shimkin [4] analyze, from the queuing theory point of view, an environment where

the agents may choose between sharing a “mainframe”, a strong, common, computational resource.

Every agent has access to an alternative, exclusive, slower CPU. If the load on the mainframe is

higher than a certain threshold, i.e. the CPU share the agent gets is too low, the agent will prefer

the private option.

2.2.3 Van Mieghem

Van Mieghem [24] proposes a “generalized c µ rule ” scheduler for one server. The scheduling policy

approximates optimality of the social welfare function of the sum of weighted utilities −
∑

WkTk,

when the agent’s cost function from the output time is a non-decreasing, convex function and the

server is close to its full capacity. These results are valid for a vast range of input distributions.

2.3 Variations On The Cluster Scheduling Problem

2.3.1 Migration

Migration is a way to correct scheduling mistakes. When the institution sees that a certain job is

running on a non-optimal CPU, it can make it migrate (move it) to another CPU in the cluster.

This solution requires the jobs to be preemptive1, and the system to support migration. Migration

itself has a performance cost due to the time it takes to move the job between CPUs, and due to

ongoing calculations to determine whether a migration should happen. Hence, a migration is worth

performing only if the current situation is non-optimal beyond a certain level. MOSIX [8, 7], a

Linux [36] based “single system image”2 cluster operating system is an example for a migration-

based system.

1A preemptive job is a job whose operation can be suspended and then resumed.
2A single system image is a concept which means making the cluster appear like one strong machine to the

users.

6

2.3.2 Off-Line Scheduling

Tanenbaum [34] describes the scheduling algorithm of “Shortest Time First” (STF), which yields an

optimal schedule for a single CPU, when the institution wishes to minimize the sum of completion

times. As indicated there, the problem the institution faces is that it has no knowledge of the jobs’

lengths, so it cannot schedule them to optimize the social welfare function.

2.3.3 On-Line Scheduling

When the time and number of arriving jobs is unknown (except for maybe a probability distribution),

on-line scheduling is called for. The institution must schedule the jobs as they are submitted,

possibly making decisions which are based on the statistical prediction of arrivals. These systems

may contain a queue of jobs which arrived, but has not begun yet. Often these systems are referred

to as queuing systems. Usually, the algorithms used in these systems are heuristics, which do not

yield an optimal schedule, but a certain approximation. For example, Condor [22], a high throughput

computing system, and Jobd [20], a utility for job management on the GNU/Linux [35] operating

system.

2.3.4 Backfilling

Backfilling, a term coined by Lifka [21] for the EASY scheduler for the IBM SP1 computer, is a

method for scheduling a cluster, when the jobs require the use of several CPUs at the same time.

If served according to FCFS (First Come First Served), jobs which require a large number of CPUs

cause cluster idleness (while waiting for enough CPUs to be free). On the other hand, letting jobs

which require a smaller amount of CPUs to leapfrog the vastly requiring job may lead to starvation.

Feitelson and Mu’alem Weil [15] compare variants of backfilling. Conservative backfilling: permits

such leapfrogs just for jobs which do not cause any delay to other jobs. This is done by asking the

agents for the expected length of their jobs. The agents have an incentive to give a short estimation,

since a shorter job is more likely to leapfrog, and will be scheduled sooner. On the other hand,

using job control tools, the job is killed (its processing is stopped) if it exceeds the declared length,

thus giving the agents incentive to declare a length which is at least as long as the real length. This

system also “compresses” the allocation, in order to close gaps. In this mechanism the agent’s utility

7

drops sharply when the declaration is shorter than the real length of the job. Comparing the final

outcome to the FCFS priority, it is “predictable” (or “just”): for a truth telling agent, every job’s

output time may only improve.

In EASY backfilling, jobs may leapfrog if they do not cause any delay to the first job in the

queue, thus losing the “predictability” property.

An important part of this work deals with the quality of the estimates. Even though the agents

knew the system had only one sided safety margins, 99.7% of them failed to declare a length longer

than the real length, and their jobs were killed before termination time.3

2.3.5 On-Line Schedulers Which Involve Monetary Transfers

These schedulers usually use market mechanisms to set the price, assuming the institutions owning

the cluster aim at making a profit.

REXEC

REXEC [14] is a scheduler which enables the agent to specify the maximal cost per minute that she

is willing to pay, and allocates her job according to that requirement.

Nimrod-G

Nimrod/G [9] supplies an economic environment for negotiations, auctions and other economical

mechanisms in order to match jobs with CPUs.

Libra

Libra [31] is an economy based on-line cluster scheduler. It requires the agent to specify three

numbers when submitting the job:

1. E The length of the job, in terms of the estimated time it would take to execute the job on a

stand alone CPU

2. D A deadline, which is a time.

3The authors claim that it is likely that some of those jobs had used checkpoints, so that not all the work was lost
(having checkpoints means the agent is capable of continuing her job from a point close to where the job was killed.

8

3. B a budget- an amount of money the agent is willing to pay.

The institution tries to deliver the output by the deadline, while charging the agent no more

than the budget. Upon submitting, the institution estimates the minimal cost as

cost = αE + β
E

D
,

where α, β are coefficients. If the estimated cost is higher than the budget, the institution refuses

to perform the job, and the agent may submit it again with relaxed conditions.

The authors assume the agents tell the truth regarding the length of their jobs, while there might

be a trade-off between the deadline and the budget. Knowing the other agents’ declarations, and

the algorithm the scheduler uses, an agent might deliberately declare a wrong value as a job length,

in order to manipulate the allocation.

2.3.6 Distributed Decisions

The match making between the job and the CPU which will execute it can be taken in a central

decision-maker, or in a distributed manner. The distributed manner enables the scaling of the

cluster. Stankovic and Sidhu [32] present an algorithm for match-making, in which every job sees

just a part of the CPUs, and vise versa. This algorithm requires full disclosure of information on

both sides, in the form of contracts: every job must state its needs, and every CPU must state its

capabilities. MOSIX and REXEC also take the distributed decision approach, but Condor uses the

centralized approach.

9

Chapter 3

The model

In this chapter we describe the mathematical model for the allocation of jobs of certain lengths to

a cluster of certain CPU speeds. We then describe the job control tools, which are operators used

after the execution of the jobs had began, in order to make specific alterations to the schedule.

We describe the conflict between the agent’s utility and the institution’s utility, and formulate the

mechanism, which is the framework for solving that conflict.

3.1 The Primitives

N agents, each with a single job which needs processing, submit their jobs to a cluster ofM CPUs1 at

time zero. The length of each job is only known to the agent. Each agent also declares the length of

the job: the amount of work required to process it. This declaration is assumed to serve the interest

of the agent, and consequently, is not necessarily the true length.2 An Off-Line Cluster Scheduling

Algorithm assigns each job to a given computer in the cluster based on the information provided by

the submitting agents. Ideally the OLCS algorithm would have the actual true parameters of each

job (i.e., its length) and would optimize cluster assignment based on that.

1When talking about a cluster, it is customary to deal with the term “node”, the basic computing entity in the
cluster. One computer may be associated with more than one node, especially if it has more than one CPU in it (an
SMP machine). In this work we assume every CPU is matched with exactly one node. We neglect the deficiency in
performance caused by sharing devices, e.g. I/O and network devices, so in other words we may say that we assume
every computer has just one CPU.

2 In contrary to a large part of the mechanism design literature, for example Mas-Colell et al. [23], the agent’s
type (her secret) is not in the utility function space.

10

In our setup the OLCS algorithm asks for the information and agents may choose to truly reveal

it or lie about it.

We shall denote by ~θ = (θ1, . . . , θN) ∈ Θ
N , Θ = R+, a profile of jobs, where N is the number

of agents and for each 1 ≤ n ≤ N , θn is its true length. We also denote by ~c = (c1, . . . , cM) ∈ RM
+

a cluster of M CPUs, where the mth CPU has processing power cm. We assume the machines

are related: machines which can be characterized by a single number cm, such that the time to

complete work θ on CPU m is exactly θ
cm
.3 While the actual units used along this work are not

important, there is a connection between the length and power units: the CPU power is measured

in length units divided by the time units used.

Another assumption we take is that the jobs are CPU-hungry during their entire execution:

at any point in time, if the CPU is busy executing one job, it cannot contribute to the execution of

another job without delaying the first job4.

~c is common knowledge, while the job’s real length, θn, is private information of agent n.

3.1.1 Allocations

The first task done by an OLCS algorithm is to define which job runs on which computer and in

which order. We refer to this as an allocation and define it as follows:

Definition 3.1 An allocation A of a set of jobs N is composed of:

1. A partition {NA
m}m∈M of N , namely :∀m ∈M, NA

m ⊂ N is a subset of N s.t.

∪m∈MN
A
m = N

∀m 6= k NA
m ∩N

A
k = ∅ (3.1)

2. Work functions: ∀m ∈M,∀n ∈ NA
m, X

A
n (t) : R+ 7→ [0, 1] denotes the percentage of CPU m

which is devoted to job n at time t, and satisfies sup{t : XA
n (t) > 0} <∞, as well as ∀m ∈M

XA,m(t) :=
∑

n∈NA
m

XA
n (t) ≤ 1

The work functions are continuous to the right.

3We ignore architectural differences, memory-size differences etc.
4In real life, this may not be the case: while one job is waiting for a resource, such as an I/O device or some

network input, another job may be processed without disturbing the first one. On the other hand, when processing
more than one job at the same time, both jobs suffer a penalty of context switching. Hence, some social welfare
function may improve by running jobs in parallel.

11

We refer to the function XA,m as the usage of computer m under allocation A.

The property defined by equation (3.1) is the no migration property, to which we limit ourselves

in this work.5 The set of all allocations is denoted by A.

For a given profile of jobs, ~θ, let us consider the subset of allocations that devote the exact

resources needed for computing:

Definition 3.2 An allocation A fulfills a vector of job lengths ~θ if

∀m ∈M ∀n ∈ NA
m cm

∫ ∞

t=0

XA
n (t)dt = θn.

The set of allocations which fulfill ~θ is denoted by FUL(~θ).

Definition 3.3 For every allocation A and job n, we denote the beginning time of job n by

BA
n = inf{t : XA

n (t) > 0} and the ending time of job n by E
A
n = sup{t : X

A
n (t) > 0}. By Tn we

denote the output time, the time in which the output of job n is given to the agent.

Definition 3.4 We say that a vector of output times, ~T := {Tn}
N
n=1, is supported by allocation

A, if Tn ≥ EA
n for all n.

Definition 3.5 We refer to the tuple Q = (A, ~T), where ~T is supported by A, as the status of the

system. We abuse notation and define BQ as BA, and EQ as EA.

3.1.2 Efficiency

Definition 3.6 An allocation A is efficient if

1. XA,m ∈ {0, 1} and is a non-increasing function, ∀m ∈ M. In other words: there are no gaps

in the usage of a CPU. The CPU is never partially used. If it is used at all, then it is used at

time 0.

2. XA
n (t) ∈ {0, 1} and is an interval in R+,∀n ∈ N . In other words, there are no gaps in the

execution of a job, nor is it executed with just a part of the CPU at any time.

5In SMP machines, the operating system handles migration between CPUs in the same computer. As we mentioned
in footnote 1 in chapter 3, we assume in this work that every computer has only one CPU.

12

Let EFF be the set of all efficient allocations, and let

EFF (~θ) := FUL(~θ)
⋂

EFF

The notion of efficiency we defined here differs from the notion of Work-Function-Pareto effi-

ciency:

Definition 3.7 ∀~θ ∈ ΘN , allocation A ∈ FUL(~θ) is Work-Function-Pareto-efficient if 6 ∃A′ ∈

FUL(~x) s.t. ∃n ∈ N s.t.:

∀l 6= n , ∀t ≥ 0 XA′

l (t) = XA
l (t)

EA
n > EA′

n .

In other words, allocation A is Work-Function-Pareto efficient if there is no change that can be done

to it, which involves just one work function, such that the ending time of that job is improved.

Example 3.1.1 A Work-Function-Pareto-efficient allocation is not necessarily efficient.

Proof: For example, let us takeM = {1, 0.1}, ~θ = {2, 1}. Allocation Ape is Work-Function-Pareto-

efficient, but it is not efficient.

N
Ape

1 = {1, 2}

X
Ape

1 (t)=

1 0 ≤ t < 1

0 1 ≤ t < 2

1 2 ≤ t < 3

0 3 ≤ t

X
Ape

2 (t)=

0 0 ≤ t < 1

1 1 ≤ t < 2

0 2 ≤ t

The gaps in the execution of job number 1 make the allocation inefficient, but there is no

alteration of X
Ape
1 alone such that the ending time of job 1 will be sooner than 3.

13

Example 3.1.2 An efficient allocation is not necessarily Work-Function-Pareto-efficient.

Proof: Let us examine allocation Aef on the same cluster, with the same set of jobs as Ape.

N
Ape

2 = {1, 2}

X
Aef

1 (t)=

0 0 ≤ t < 10

1 10 ≤ t < 30

0 30 ≤ t

X
Aef

2 (t)=

1 0 ≤ t < 10

0 10 ≤ t

This allocation, though efficient, is not Work-Function-Pareto-efficient. Both agents would be

better off executing their jobs on CPU number 1, even if they move there without changing any

other work function but their own.

Definition 3.8 We say that efficient allocations A1, A2 share the same schedule if :

∀n ∈ N n ∈ NA1
m ⇔ n ∈ NA2

m

∀m ∈M,∀k, l ∈ NA1
m BA1

k > BA1
l ⇔ BA2

k > BA2
l

∀m ∈M,∀k, l ∈ NA1
m EA1

k > EA1
l ⇔ EA2

k > EA2
l .

In other words, efficient allocations share the same schedule if the matching of jobs to computers

is the same, and the order in which jobs are executed within the computer is also the same.

3.2 Job Control Tools

Job control tools are used in order to alter the allocation after the cluster has begun executing the

jobs according to it.

The execution stage comes after a set of jobs is assigned to computers via an allocation. During

an execution some of the plans could contradict reality, as a consequence of agents not reporting

14

truthfully. For example, if a job ends prematurely, then the real ending time could be shorter than

planned. In the period of time between the real ending time and the planned one, the CPU would

be used by the job less than planned.

Consequently, for a set of a real allocation and real jobs, we have the following definitions, which

enable changing the allocation dynamically. We refer to the initial status as a static status, and to

the status after the changes as a dynamic status. We denote the dynamic status at time t by Q(t),

and the static status as Q(0) or Qstatic. By Q(∞) or Qfinal we denote the final status.

Recall that in our set-up, the initial scheduling is done based on the reported job lengths, which

may be quite different from the true lengths. Consequently, job execution may end sooner than

planned. More formally:

Definition 3.9 We denote the termination time of job n, the time in which job n was terminated,

by Ln ∈ R+. This time is only known to the institution after the job executes work θn.6 The

termination time of job n fulfills:

cm

∫ Ln

t=0

XQ(t)
n dt = θn

3.2.1 Intuition For Job Control Tools

The term “job control” is used by system administrators to describe various ways by which one can

interfere with the CPU allocation during the execution of processes, in particular, ways to suspend

the execution and resume it at a later stage7.

Note that not all job control tools are necessarily available on every system, as indicated in

Stevens [33].

We focus on certain job control tools, which present a mathematical model of existing tools,

some of which are operated manually, and some automatically.

1. Renice8: The job gets only a share of the CPU, but for enough time to complete its execution.

6On the other hand, this information cannot be hidden from the institution.
7Job Control is used by various Unix shells, e.g. bash [11]. Job Control is also used by Jobd [20] as a manner of

punishment: When a job is submitted to Jobd, the user supplies certain demands of memory and CPU. If the job
uses less, Jobd tracks that down, and lowers the resources allocated to it. If the job uses more than declared, the job
is punished by a “renice” operation- the amount of resources it gets is limited.

8Based on the renice command on Unix systems.

15

2. Postpone9 : the job stops receiving any computation power for some time, then it gets enough

share of the CPU for enough time to complete its processing.

3. Close-Gap10: A gap is a period of time in which the CPU stands idle11, though there are jobs

or parts of jobs awaiting that CPU. This tool closes that gap by performing the tasks which

await the same CPU.

4. Early Release12 : The output of the job is given to the agent prior to the time agreed upon, as

soon as the processing of the job is done. We assume every system can use the Early Release

tool, as it is a matter of policy rather than availability.

Some of those tools are actually a combination of more basic tools, which are not useful on their

own. The tool Renice is a combination of the two following basic tools:

• Extended-Stay: Though the job was supposed to be stopped at a certain time, it gets an extra

amount of time.

• Reduced power: The job’s share of the CPU changes. However, the time in which the job’s

processing is stopped is not changed.

The tool Postpone is a combination of the basic tool Extended-Stay and the basic tool Gap:

• Gap13: The job does not get any share of the CPU for a certain amount of time. At a later

time, the job receives a positive share of the CPU again.

3.2.2 Formal Definitions for Job Control Tools

We turn to formalize the aforementioned job control tools in the form of operators over allocations.

As we exclude job migration, those operators do not change the partition: the sets N A
m are set before

the execution stage, and do not change. As we later prove, it is optimal not to perform any changes

to the static allocation, hence the lack of migration does not impose a major constraint.

9Postpone, for example, is not possible if preemptions are not allowed.
10Resembles regular behavior on Unix Systems, when the commands are separated by “;”: The next command

begins its execution once the first one has ended.
11Let us distinguish between full gaps, gaps in which the CPU stands totally idle (its usage being 0), and partial

gaps, when the the usage drops to a positive value. In this work we allow closing of full gaps only, to avoid complex
definitions.

12Typical of large clusters, such as the ASCI initiative [29, 39], where the agents do not have direct access to the
machine. This, unlike the former two, is not a common Unix tool.

13Resembles the combination of suspend and (after a gap of time) fg on Unix systems.

16

We begin with several preliminary definitions:

Definition 3.10 ∀m ∈M,∀Q ∈ (A,RN
+), let

Qm := ({Xk : k ∈ Nm}, {Tk : k ∈ N}).

Then Q is a Cartesian product:

Q = ×m∈MQm.

We refer to Qm as the status of CPU m.

Note that once the static statuses are set, changes done to the status of one CPU, by performing

an operator on it, do not affect the status of any other CPU. In other words, let us relate to operators

of two kinds:

• An operator on CPU m: OPm on a status Q, such that OPm makes alterations to XA
k ,

∀k ∈ NA
m .

• An operator on job n: OPn on a status Q, such that OPn makes alterations to X
A
n , where

n ∈ NA
m , and it may affect also other work functions X

A
k where k ∈ N

A
m

Then,

(OPm(Q))k = Qk ∀k 6= m

(OPn(Q))k = Qk ∀n ∈ N
A
m ∀k 6= m.

Definition 3.11 ∀r ∈ R+,∀n ∈ N , we define the job control operator ESn(r), referred to as

extended-stay for job n of time amount r, on a status Q as follows, where n ∈ NA
k and

s stands for lim inft→EA
n
(XA

n (t))
14:

XESn(r)(Q)
n (t) =

s r + EA
n > t ≥ EA

n

XA
n (t) otherwise

14Defining s as lim inft→EA
n
(XA

n (t)) instead of XA
n (E

A
n) is a solution for the technical difficulty, resulting from

assuming that the work functions are right-continuous only, which means that XA
n (E

A
n) = 0, while XA

n (B
A
n) > 0.

17

for l 6= n:

X
ESn(r)(Q)
l (t) =

XA
l (t) l 6∈ NA

k

XA
l (t) l ∈ NA

k and 0 ≤ t < EA
n

0 l ∈ NA
k and EA

n ≤ t < EA
n + r

XA
l (t− r) l ∈ NA

k and r + EA
n ≤ t

T
ESn(r)(Q)
l = max(E

ESn(r)(Q)
l , TA

l)

Note that the extended jobs are not made to run in parallel to other jobs, even if they do not

use all of the CPU.

Definition 3.12 ∀s, r ∈ R+,∀n ∈ N , we define the job control operator RPn(s, r), referred to as

reduced power for job n to percentage s from time r, on a status Q as follows:

X
RPn(s,r)(Q)
l (t) =

sXA
n (t) if l = n and t ≥ r

XA
l (t) otherwise

~TRPn(s,r)(Q) = ~TQ.

Note that if s < 1, then RPn(s, r) does not preserve the efficiency. More over: if A fulfills ~θ and

s < 1, then RPn(s, r)(Q) will not fulfill ~θ. Though we make a general definition here, we do not

use RP on its own in this work: RP is used only to define the operator RN , and in this context we

make sure that the final allocation fulfills the vector of real lengths ~θ.

As part of the POST operator, we define the GAP operator. GAP transfers a part of the work

that needs to be done for a job to another time in the future, on the same CPU. In order to make

sure that the allocation formed by this operator is well-defined, the rest of the work is transferred

to some future time s′, at which the CPU is surely vacant. The GAP operator does not preserve

efficiency, either.

Definition 3.13 ∀s, r ∈ R+,∀n ∈ N , we define an operation GAPn(r, s), gap in job n from time

r until time s on a status Q, in which Xn(t) = 1 ∀r < t < EA
n , as follows:

XGAPn(r,s)(Q)
n (t) =

XA
n (t) 0 ≤ t < r

0 r ≤ t < s′

XA
n (t− (s

′ − r)) s′ ≤ t

18

where n ∈ NA
k , s

′ = max(s, sup{t : XA
k (t) 6= 0}).

For l 6= n:

X
GAPn(r,s)(Q)
l (t) = XA

l (t)

T
GAPn(r)(Q)
l = max(E

GAPn(r)(Q)
l , T

Q
l)

Note that the definition of GAP , and in particular the use of s′, does not permit creating an

allocation in which two jobs run in parallel on the same CPU.

Now we turn to define the job control tools we will actually refer to later on:

Definition 3.14 ∀s, r ∈ R+, ∀n ∈ N , ∀θn ∈ Θ, we define the job control operator

RNn(s, r, θn) referred to as renice for job n from time r to a percentage s until it performs

a total work of θn on a status Q as follows:

RNn(s, r, θn)(Q) = RPn(0, Ln) ◦ ESn(∞) ◦RPn(s, r)(Q)

where Ln, the termination time, is implicitly defined by

cm

∫ Ln

t=0

XESn(∞)◦RPn(s,r)(Q)
n dt = θn

where n ∈ NA
m.

In order to define the CLOSE operator, we need to define split jobs. A job is split if its work

function is not an interval in time. More formally:

Definition 3.15 Job n ∈ NA
m is split if

∃t′ s.t. BA
n < t′ < EA

n and XA
n (t

′) = 0

We denote the set of split jobs in NA
m by SPLIT

(

NA
m

)

.

Definition 3.16 ∀s, r ∈ R+,∀n ∈ N , we define an operation CLOSEm(r, s), close gap in com-

puter m from time r until time s on a status Q, in which Xm,A(t) = 0 ∀r ≤ t < s, as follows:

~TCLOSEm(r,s)(Q) = ~TQ

19

XCLOSEm(r,s)(Q)
n (t) =

XA
n (t+ s− r) r ≤ t < tfirstsplit and n ∈ N

A
m

XA
n (t) otherwise

where tfirstsplit stands for

inf{t : ∃k ∈ SPLIT
(

NA
m

)

,∃BA
k < t′ < t s.t. XA

k (t) > 0 and X
A
k (t

′) < 1}

In other words, tfirstsplit is the first time in which a split job on CPU m resumes its execution.

The limitation t < tfirstsplit enables activating CLOSE after GAP , or even several GAP oper-

ations, without undoing those GAP operations.

Definition 3.17 ∀s, r ∈ R+,∀n ∈ N , we define an operation POSTn(r, s, θn), postpone job n

from time r to time s and let it continue until it performs a total work of θn on a status

Q as follows:

POSTn(r, s, θn)(Q) = RPn(0, Ln) ◦ CLOSEm(r, s) ◦ ESn(∞) ◦GAPn(r, s)(Q)

where n ∈ NA
m, and Ln is implicitly defined by

cm

∫ Ln

t=0

XCLOSEm(r,s)◦ESn(Ln)◦GAPn(r,s)(Q)
n dt = θn.

Note that the POST and RN operators, as defined, cannot be used simultaneously on one

system, for if they are, then it might occur that at time s′ in which the CPU was supposed to be

idle, a job which was reniced is still running.

Definition 3.18 ∀n ∈ N , we define an operation EARLYn, early release of job n on a status

Q, as follows:

T
EARLYn(Q)
l =

T
Q
l l 6= n

min(EA
n , Ln) l = n.

∀t ≥ 0, ∀l ∈ N X
EARLYn(Q)
l (t) = XA

l (t)

Note that EARLY is only well-defined at time Ln, and only if Ln ≤ EA
n . We constrain the use

of EARLY to those cases only.

20

3.3 Utilities

We assume in our model that all agents behave in order to maximize some utility function which

is known to all, and is a linear combination of the time it took them to receive the results of their

job with some monetary transfer. On the other hand, we assume that the institution also behaves

to maximize its utility, which is derived from the final status. The institution ignores the monetary

outcome.

3.3.1 Agents’ Utilities

Assume each agent n receives her job’s results at a positive time Tn. Also assume that every agent

is required to pay a price Pn to the institution for the execution of her job (Pn ∈ R does not have

to be positive). Assume the agent has a valuation Vn for a performed job. Then the agent’s utility

Un is

Un = Vn − Tn − Pn. (3.2)

As we currently ignore individual rationality15 considerations, we may assume w.l.o.g. that Vn = 0,

∀n ∈ N .

3.3.2 Social Welfare

Definition 3.19 A social welfare function is a function g : RN
+ 7→ R. The set of all social

welfare functions is denoted by G.

Definition 3.20 ∀n ∈ N , for any vector ~z ∈ RN , let ~z be decomposed as ~z = (zn, z−n), where

z−n ∈ RN−1.

Definition 3.21 A social welfare function is regular if ∀z−n ∈ RN−1
+ ∀x, y ∈ R+

x > y ⇒ g(z−n, x) < g(z−n, y).

For example, the social welfare function

g = −
∑

k∈N

Tk

15An individually rational agent will only participate if her utility from participating exceeds her utility from not
participating, which is considered 0. We currently assume all agents must participate. In section 7.5 we discuss
individually rational agents, who may choose not to participate.

21

is a regular social welfare function. We denote that particular social welfare function by g
∑

.

Lemma 3.22 g
∑

is a regular social welfare function.

Proof: For an arbitrary z−n ∈ ΘN−1 ⊆ RN−1
+ , and x, y ∈ Θ ⊆ R+ such that x > y, we have

g
∑

(z−n, x) = −x−
N−1
∑

p=1

zp <

−y −
N−1
∑

p=1

zp = g
∑

(z−n, y).

Therefore, g
∑

is regular.

The function −g
∑

is an example for a non-regular social welfare function.

Lemma 3.23 If g is a regular social welfare function and

A ∈ argmax
a∈FUL(~θ)g(

~Ea)

then XA,m(t) ∈ {0, 1} and is a monotonic decreasing function (in the weak sense) ∀t ≥ 0, ∀m ∈M.

Proof: Assume in contradiction that XA,m is not non-decreasing. Then ∃ε, δ > 0, t2 > t1+ ε such

that 1 ≥ XA,m(t2)− δ > XA,m(t1).

Alternatively, assume in contradiction ∃t1 s.t. 0 < XA,m(t) < 1. Since XA,m is continuous to

the right, ∃δ > 0, ε > 0, such that t2 > t1 + ε, and ∀t1 ≤ t < t2 X
A,m(t) < 1− δ.

Then, in either of the cases, the CPU can perform at least an extra work of δ(t2 − t1)cm. Let

Em,A := maxk∈NA
m
EA
k . Let n be a job such that n ∈ N

A
m and E

A
n = Em,A.

Let us define allocation A2:

∀j ∈M NA2
j = NA

j

XA2
l (t) =

XA
l (t) + δ t1 ≤ t < t2 and l = n

XA
l (t) otherwise

In this allocation we have added more work to job n. Let ~θ denote the vector of lengths A fulfills.

Then exists a unique t3 < Em,A such that

cm

∫ t3

0

XA2
n (t)dt = θn

cm

∫ EA
n

t3

XA2
n (t)dt = δ(t2 − t1)cm.

22

Let us define allocation A3:

∀j ∈M NA3
j = NA

j

XA3
l (t) =

XA
l (t) + δ t1 ≤ t < t3 and l = n

0 t3 ≤ t and l = n

XA
l (t) otherwise

Allocation A3 fulfills ~θ, since we built it so for agent n, and we did not change the other work

functions:

∀l 6= n XA
l = XA3

l

∀l 6= n EA
l = EA3

l

EA
n > EA3

n

Then g(~EA3) > g(~EA), and A 6∈ argmax
a∈FUL(~θ)g(

~Ea).

Corollary 3.3.1 If allocation A is Work-Function-Pareto-efficient, then XA,m ∈ {0, 1} and is a

monotonic decreasing function (in the weak sense).

Proof:If it does not hold for allocation A that XA,m ∈ {0, 1} and is a monotonic decreasing function

(in the weak sense), then build allocation A3 as indicated in the proof of lemma 3.23. Under

allocation A3 one of the agents is better off, while the others’ work functions are not changed, hence

A cannot be Work-Function-Pareto efficient.

Lemma 3.24 If g is a regular social welfare function and A ∈ argmax
a∈FUL(~θ)g(

~Ea) then XA
n (t) ∈

{0, 1} and is a segment in time, ∀n ∈ N , ∀t ≥ 0.

Proof: Let us assume by contradiction that on CPU m there is at least one job whose work function

is not a segment in time of value 1. Let ÑA
m denote the set of all the jobs on CPU m which are not

a segment in time of value 1:

ÑA
m := N

A
m

⋂

{

k : ∃BA
k < t′ < EA

k s.t. XA
k (t

′) < 1
}

23

Let us pick one member of that set (according to the assumption, the set is not empty), such

that no other job on this set ends after her:

n ∈
{

k : k ∈ ÑA
m and EA

k ≥ EA
j ∀j ∈ ÑA

m

}

.

Due to right-continuity of the work function XA
n (t),

∃BA
n < t1 < EA

n s.t. XA
n (t1) < 1⇒

∃δ > 0, ε > 0, t2 > t1 + ε s.t.

∀t1 ≤ t < t2 XA
n (t) < 1− δ.

Let ÑA
m,n denote the set of jobs on CPU m, which are active while job n is active:

ÑA
m,n := N

A
m

⋂

{k : ∃BA
n ≤ t < EA

n s.t.XA
k (t) > 0}.

According to lemma 3.23, the usage of CPU m is an interval in time of value 1 because allocation

A optimizes function g. Hence, all the CPU time which is not devoted to job n must be devoted to

other jobs, if job n has not ended yet (the CPU does not stand idle), and ÑA
m,n) {n}.

Let Ĩ = |ÑA
m,n|. Let i(k) be an ordinal number of job k in Ñ

A
m,n according to its ending time,

such that

EA
{k:i(k)=1} ≤ . . . ≤ EA

{k:i(k)=Ĩ}
.

∀k ∈ ÑA
m,n let us denote the CPU time job k got while job n was active by

si(k) :=

∫ EA
n

BA
n

XA
k (t)dt

Now let us define allocation A2 such that:

∀j ∈M NA2
j = NA

j

XA2
l (t) =

1 l ∈ ÑA
m,n and ti(l) ≤ t < ti(l)+1

0 l ∈ ÑA
m,n and B

A
n ≤ t < ti(l)

0 l ∈ ÑA
m,n and ti(l) < t

XA
l (t) otherwise

24

where t1 = BA
n , tĨ+1 = EA

n and ∀1 < i(l) ≤ Ĩ, ti(l) = ti(l)−1 + si(l)−1. Under allocation A2, each

job k ∈ ÑA
m,n gets the same work as under allocation A until time B

A
n , and an additional work of

cmsi(k) from that time on, hence it gets the same work it got under allocation A. Hence, allocation

A2 fulfills the same vector of lengths ~θ which A fulfills.

The order of ending times has not changed either. What has changed is the amount of work

done for jobs with an ending time after job l, before job l ends. For job l ∈ ÑA
m,n, l 6= n, under both

allocations all the jobs which end before job l must get their share of CPU time before job l ends.

Under allocation A, some other jobs (at least job n) also get some work done until that time, and

the following inequality is strict:

EA
l > BA

n +

i(l)−1
∑

p=1

sp.

Under A2 on the other hand, while the ending time of job n remains the same E
A
n = EA2

n , all

other ending times in ÑA
m,n improve: ∀l ∈ Ñ

A
m,n, l 6= n, EA2

l = BA
n +

∑i(l)−1
p=1 sp < EA

l .

Hence,

g(~EA2) > g(~EA)

A 6∈ argmax
a∈FUL(~θ)g(

~Ea)

in contradiction to the assumption.

Theorem 3.25 If g is a regular social welfare function, then

A ∈ argmax
a∈FUL(~θ)g(

~Ea)⇒ A ∈ EFF (~θ).

Proof: Follows directly from lemma 3.23 and lemma 3.24.

Corollary 3.3.2 If g is a regular social welfare function, and

A ∈ argmax
a∈FUL(~θ)g(

~Ea)

then A is Work-Function-Pareto efficient.

25

Proof: Assume in contradiction that A is not Work-Function-Pareto efficient. Then there is at least

one job n, and an allocation A′ ∈ FUL(~θ), such that no other work function but n’s is changed, and

therefore:

∀k 6= n EA
k = EA′

k

and still by changing n’s work function alone,

EA
n < EA′

n .

Then the value of the social welfare function g is higher on allocation A′:

g(~EA′) > g(~EA)

and A cannot optimize g:

A 6∈ argmax
a∈FUL(~θ)g(

~Ea).

The institution’s utility is a social welfare function. It is derived either from the vector of times

agents receive their jobs in ~T , or from another element of the status, such as ~E. The first option

is typical of an institution which benefits from completion of jobs, because the agents work for

the institution to which the cluster belongs. The latter option is typical of institutions which sell

computing power to external agents. Such an institution may wish, for example, to clear its cluster

of jobs as soon as possible, rather than have the output delivered to the agents as soon as possible.

We will limit the discussion to social welfare functions of the first kind. We have already assumed

the institution is indifferent to monetary transfers. Thus, the institution’s utility is g(~TQ(∞)). An

extension of this work may deal with more general institutional utilities, which are functions of ~E

or of ~X.

3.4 Motivating Example: A Straightforward Implementation

Had the institution known the lengths of the jobs ~θ, it could have chosen an allocation A to max-

imize the social welfare function. However, jobs’ lengths are private information and whereas the

26

institution can ask for that information, agents may choose to provide false information to maximize

their own utility.16

Following is an example where agents prefer to lie, for a given direct revelation mechanism. In

this mechanism, the agents declare their lengths ~b , and the institution allocates A so that it fulfills

~b, and maximizes g
∑

.

Lemma 3.26 An allocation which maximizes g
∑

must be efficient.

Proof: Follows directly from lemma 3.22 and theorem 3.25.

3.4.1 Example: The Need for Information

Let us examine the following situation:

• N = 2, ~c = (1).

• No payments are made.

• The static allocation is A, an allocation which fulfills ~b and maximizes g(~T) = −(T1 + T2).

• ∀n ∈ N , if bn < θn, RNn(E
A
n , 1, θn) is applied. If bn > θn, no operator is applied. In other

words, the final allocation is one which shares the same schedule as allocation A, but fulfills ~θ.

In the static allocation, ~T = ~EA. In order to maximize g, given ~b, assuming ~b truly represents ~θ,

there are two possible allocations, both of which are efficient, Work-Function-Pareto-efficient, and

fulfill ~b. One of them, or both, maximize g
∑

depending on whether b1 > b2 or the other way round.

W.l.o.g., assume b1 ≥ b2. Therefore, an optimal allocation is:

X
Ab1>b2

1 (t)=

0 0 ≤ t < b2

1 b2 ≤ t < b1 + b2

0 b2 + b1 ≤ t

X
Ab1>b2

2 (t)=

1 0 < t ≤ b2

0 b2 < t < b1 + b2

0 b2 + b1 < t

16Mechanisms that use the original type space as the signal space are referred to as ‘Direct revelation’ mechanisms.
More generally, the institution may allow the use of an arbitrary signal space, and not necessarily jobs’ lengths.
However, due to the Revelation Principle [26], this restriction is without loss of generality.

27

and ~T = ~E.

Obviously, in our case where M = 1, every agent prefers to be scheduled first, and for that to

happen, she needs to declare a type smaller than the other agent’s. Hence, for both agents the best

declaration would be a lie: b1 = b2 = 0, regardless of ~θ. Now assume θ1 < θ2 in our example. Note

that agents lie, and the resulting allocation is not optimal.

3.5 The mechanism

A mechanism is a commitment of the institution on a particular course of action it would take in

reaction to agents’ declarations about their own lengths.17 This course of action has three compo-

nents:

1. Monetary transfers (prices).

2. A static allocation.

3. Job control triggers.

3.5.1 Prices

Definition 3.27 ∀~b ∈ ΘN , g ∈ G, A price vector ~P (~b) ∈ RN is a vector of functions Pn(~b) :

ΘN 7→ R, each of which represents the amount of money agent n pays.

If the price is negative, we may think of it as compensation the institution gives the agent.

3.5.2 A Static Allocation

Definition 3.28 ∀~b ∈ ΘN , g ∈ G, A static allocation o(~b,~b) : ΘN 7→ A is an allocation which

fulfills ~b and optimizes g.

3.5.3 Job Control Triggers

When job n is completed (at time Ln), the institution knows that. If the job is not terminated

before time EA
n , then the institution knows that θn > bn. If Ln < EA

n , the institution knows that

bn > θn. It also knows the exact value of θn:

17See footnote 16 in this chapter.

28

θn =

∫ Ln

0

Xn(t)dt

According to this information, job control tools are applied, subject to their existence on the oper-

ating system. An operator activated at time t0 may not change work functions at times prior to t0.

At time t0, the only information used in the activation of the operator, is the information available

at that time. Ln is only known if job n has already terminated its execution.

In order to define the terms of activation of the job control tools, we require the following

definitions:

Definition 3.29 If bn 6= θn, agent n is lying. If bn > θn, agent n is lying upward. If bn < θn,

agent n is lying downward.

• Systems With a Renice Tool

If θn > bn, the institution performs RNn(E
A
n , srenice, θn) according to some value of the

percentage srenice which is determined by the specific mechanism.

• Systems With a Postpone Tool

If θn > bn, the institution performs POSTn(E
A
n , spost + E

Q(0)
n − E

Q−
n , θn), where spost > EQ

n

is a parameter depending on the specific mechanism. E
Q−
n stands for the time in which job n

was supposed to be terminated according to the status when it began the execution.

The term E
Q(0)
n −E

Q−
n comes to insure that a lying agent does not benefit from other agents

lying upward.

The RP operator which is one of the elements of POST is also a simple degeneration: its

effect is not the general effect of reducing the power to a certain percentage, but killing the

job altogether. Therefore, the postpone tool might be available, while the Renice tool is not.

• Systems With a Close-Gap Tool

When θn < bn, a termination happens at time t. The institution then reacts with

CLOSEm(Ln(t), E
A
n),

where n ∈ NA
m .

29

• Systems With an Early Release Tool

If θn = bn, the institution performs EARLYn.

Note that the way we trigger them, the POST and RN tools are replaceable, but cannot be

combined, since they are activated by the same trigger.

Also note, that when RN or CLOSE are activated, other jobs except the job which triggered

the operator are affected:

Definition 3.30 For any n ∈ NA
m, we denote by F

A
n := N

A
m

⋂

{k : BA
k ≥ BA

n } the subset of jobs we

refer to as job n’s dependents: the jobs, including n, which begin after job n on the CPU it runs

on, under allocation A. Let fn =
∣

∣FA
n

∣

∣ denote job n’s dependency number: the number of jobs

in set FA
n .

Definition 3.31 A mechanism Z = (o, ~P , ~T) is composed of an output function, o(~x, ~y) : Θ2N 7→

A, a vector of price functions ~P = ~P (~x) and a vector of output times ~T which is supported by

A = o(~x, ~y).

A mechanism is a pre-defined protocol of actions, taken in a known environment, which is the

rules of the game. The social welfare function g, and the price functions ~P (~b) are common knowledge.

Note that the price is a function of the declarations ~b, and does not depend on ~θ.

3.5.4 The Game

We can now describe the N player game at the heart of our model. The game is held between the

agents themselves, under the conditions determined by the institution.

1. Mechanism commitment: The institution commits to a given mechanism that is composed of:

(a) ∀~b ∈ ΘN , o(~b,~b)

(b) ∀~b ∈ ΘN , ~T (~b)

(c) ∀~b ∈ ΘN , P (~b)

(d) the available job control tools and their triggers: ∀~b, ~θ ∈ ΘN , o(~b, ~θ)

2. Agents’ types (lengths) are drawn and privately communicated to them.

30

3. Declaration: The agents declare their types ~b ∈ ΘN .

4. Realization: Based on ~b and its earlier commitment, the institution decides on the static status

Q = (A, ~EA) ∈ FUL(~b)(where A = o(~b,~b)), prices ~P = ~P (~b) and job control tool parameters:

either spost or srenice, according to the job control tool in use. Note that at this point, the

status is delay free: ~T = ~EA.

5. Payment: The agents pay amounts ~P .

6. Execution: The jobs are submitted to the cluster according to Q. Job control operators are

applied according to the commitment in stage 1. We use the notation ~T (~b, ~θ) to represent the

output times vector resulting from a game in which the agents declare ~b, and the real types

are ~θ. We use the notation ~U(~b, ~θ) to represent the vector of agents’ utilities resulting from

the same situation.

Note 3.5.1 We currently assume that the agents who submit a bid cannot change their minds at

this point and decide to withdraw. We discuss this possibility in chapter 7.5.

3.6 Strategies

When facing the mechanism, an agent would decide upon certain courses of action, depending on

her type. Some courses of action may always be at least as good as others, while some would be

considered optimal in a narrower variety of cases.

Definition 3.32 ∀θn ∈ Θ, agent real types, a strategy for agent n in a mechanism Z is a function

Sn : Θ 7→ Θ, such that Sn(θn) = bn, a declaration.

By S−n(θ−n) = ×k 6=nSk(θk) we denote the strategy tuple formed by all agents except n, when

they use strategy S.

Definition 3.33 Strategy S is a dominant strategy for agent n in a mechanism Z, if ∀~θ ∈

ΘN , b−n ∈ ΘN−1, bn ∈ Θ,

Un((S(θn), b−n), ~θ) ≥ Un((bn, b−n), ~θ).

31

Definition 3.34 A strategy S : Θ 7→ Θ is in Ex-Post equilibrium if it is the best strategy against

the other agents using the same strategy, regardless of what their types are: ∀n ∈ N , bn ∈ Θ, ~θ ∈ ΘN ,

Un((Sn(θn), S−n(θ−n)), ~θ) ≥ Un((bn, S−n(θ−n), ~θ)).

The term “Ex-Post Equilibrium” was introduced in Holzman et al. [18]. We use this term

when agent n’s strategy is optimal, assuming all others play their prescribed strategies. However,

the Ex-Post equilibrium is stronger than the standard Bayesian equilibrium (which was introduced

by Harsanyi [17]), as it is the best reply for agent n even after learning the realized types of her

opponents. The Ex-Post equilibrium notion is weaker than the notion of dominance, because it

hinges on agents compliance with the prescribed strategies, whereas a dominant strategy is optimal

no matter how opponents act.

32

Chapter 4

Desired Mechanisms

In this chapter we present certain qualities of off-line scheduling mechanisms, by which we evaluate

a mechanism. These qualities may be objective (either the mechanism has this quality or it does

not), or they may be relative (senses in which a certain mechanism is preferable to others).

4.1 Incentive Compatibility (IC)

We wish to find a mechanism in which the agents are better off telling the truth. This way we verify

that

o(~b,~b) ∈ argmax
FUL(~b)g(

~TQ(0))⇒ o(~b, ~θ) ∈ argmax
FUL(~θ)g(

~TQ(∞)).

The best sense in which the agents can be better off is the sense of dominant strategies.

Definition 4.1 An arbitrary social welfare function g ∈ G, is IC in dominant strategies in

mechanism Z if S(θn) = θn is a dominant strategy, when the static allocation optimizes the function

g.

A weaker notion of incentive compatibility is the following:

Definition 4.2 An arbitrary social welfare function g ∈ G, is IC in Ex-Post equilibrium in

mechanism Z if S(θn) = θn is in Ex-Post equilibrium, when the static allocation optimizes the

function g.

33

.

Definition 4.3 Mechanism Z implements function g in Ex-Post Equilibrium if g is IC in

Ex-Post equilibrium in mechanism Z.

Mechanism Z implements function g in dominant strategies if g is IC in dominant strate-

gies in mechanism Z.

4.2 Budget Considerations

As monetary transfers between the institution and the agents may be positive or negative, we look

at the aggregate sum the institution gets (the rent), and check whether it is positive.

Definition 4.4 A mechanism has positive rent if the institution never spends money: ∀~b ∈ ΘN ,

∑

k∈N Pk(~b) ≥ 0.

A more particular case of a positive rent (and a more desirable, since we assume the institution

is indifferent about the payments the agents make), is a balanced budget.

Definition 4.5 A mechanism is budget balanced if ∀~b ∈ ΘN ,
∑

k∈N Pk(~b) = 0.

4.3 Safety Margins

Safety margins are the continuity of the utility of an agent with regard to the size of her lie, at the

point of truth telling1. It is possible to demand that the agents tell the exact truth, if they actually

know it. But as is often the case, agent n might have slightly perturbed information about its true

length.

Definition 4.6 A mechanism has upper safety margins if ∀ε > 0 ∃δ > 0 s.t. ∀n ∈ N ,∀g ∈

G,∀~b ∈ ΘN , ~θ ∈ ΘN

θn < bn < θn + δ ⇒
∣

∣

∣Un(~b, (bn, θ−n))− Un(~b, ~θ)
∣

∣

∣ < ε.

1Note that this notion of continuity differs from the notion of continuity of the outcome function, which is introduced
by Mount and Reiter [25], and is later used by Hurwicz [19]. The continuity of the outcome function relates to the
continuity of the allocation with regard to the declarations. Obviously, we do not expect any off-line cluster scheduling
mechanism to be continuous in that sense.

34

A mechanism has lower safety margins if ∀ε > 0∃δ > 0 s.t. ∀n ∈ N ,∀g ∈ G,∀~b ∈ ΘN , ~θ ∈ ΘN

θn − δ < bn < θn ⇒
∣

∣

∣Un(~b, (bn, θ−n))− Un(~b, ~θ)
∣

∣

∣ < ε.

We say that a mechanism has safety margins if it has both lower and upper safety margins.

When a mechanism has one-sided safety margins (either upper safety margins or lower ones),

and the agent only has distributional information dn over θn, the strategy of telling the expectation

value of the length of the job may be inferior to telling a diverted value, such as sup{x : dn(x) > 0}.

4.4 Fixed Prices

There is an advantage in setting the payment stage before the execution stage: since the monetary

transfer may be from the agent to the institution (agents actually pay for the execution of the job),

setting the payment stage before the execution enables the agent to change her mind and withdraw

once she knows the price.

We design all the mechanisms we suggest such that their prices are fixed. This approach is not

mandatory, as suggested by Nisan and Ronen [28]. In the spirit of their work, it is possible to build

a mechanism for the off-line cluster scheduling problem, which maximizes the g
∑

function. If the

payment is postponed till after the jobs are executed, and their real lengths are verified, then the

payment to agent n is composed of a compensation part, which equals the negation of her utility

from execution, and a bonus part, which depends on the declarations of the other agents, and on

her own real type. Nisan-Ronen’s style payment function would be, in this case,

Pn(~b, ~θ) = −Tn(~b, ~θ) +
∑

k 6=n

Tk(~b, (θn, b−n))

which would make the agent’s utility

Un(~b, ~θ) =

−Tn(~b, ~θ)− Pn(~b, ~θ) = −
∑

k 6=n

Tk(~b, (θn, b−n))

35

coincides with the g
∑

social welfare function. In this mechanism the effect of θ−n on the utility

function of agent n is neutralized by verification, but the agents cannot know in advance the price

they will have to pay.

4.5 Justness

An agent may feel more secure, if she knows that when she tells the truth, her output time will be

no more than according to the static status. This is a quality of the mechanism:

Definition 4.7 A mechanism is just if ∀n,∀~θ,~b ∈ ΘN

bn = θn ⇒ Tn(~b,~b) ≥ Tn(~b, ~θ).

In other words, if the mechanism is just, a truth teller is promised a minimal utility at payment

time. The truth teller’s utility will not be damaged when other agents’ lies are revealed. This quality

enables the institution to keep its commitments to the agents.

4.6 Scalability- Limitations on Input

A good mechanism accepts wide, possibly unlimited, ranges of real types, and manages to execute

the jobs. It also works for large variances on the job lengths: different agents may have jobs which

vary substantially.

4.7 Final Social Welfare

On Equilibrium, all agents report their real type, and the institution is able to optimize the final

social welfare, which is equivalent to the initial social welfare. However, the social welfare of off-

equilibrium situations carries importance as well. An off-equilibrium situation might be reached due

to insufficient information, as described in section 4.3, or even due to irrational agents.

The social welfare function is not only a quality measurement: it is also the utility of the insti-

tution, (especially if the agents are workers of the institution): it benefits from the early completion

of the jobs. A situation where a portion of the jobs is not completed is not acceptable.

Hence, we define a quality of final social welfare:

36

Definition 4.8 Let Z1 = (o1, ~P 1, ~T 1), Z2 = (o2, ~P 2, ~T 2), be two mechanisms which optimize the

same social welfare function g. Z1 has a better final social welfare on Θ̂N ⊆ ΘN than Z2 if

∀~θ ∈ Θ̂,~b ∈ ΘN ,

o1(~b, ~θ), o2(~b, ~θ) ∈ FUL(~θ) (4.1)

g(~T o1(~b,~θ)) ≥ g(~T o2(~b,~θ)).

37

Chapter 5

A Special Case of a Social Welfare

Function

In this chapter we focus on a particular, natural social welfare function: g
∑

=
∑

k∈N Uk: the sum of

utilities. We then turn to describe the Vickrey-Clarke-Groves mechanism, and view that in contrary

to other environments, it is not effective in the off-line cluster scheduling environment. We end this

chapter by proposing a mechanism which gives positive results for g
∑

in this environment.

5.1 The Vickrey-Clarke-Groves Mechanism

5.1.1 Introduction

Consider an example where a single good is auctioned off. In that case, the Vickrey-Clarke-Groves

(VCG) mechanism [37, 10, 16] implements g =
∑

nWn(o(~b), θn) in dominant strategies, where ~b are

the declarations, and ~θ are the secrets: the real valuations of the good. o(~b) is the allocation (the

decision: which of the agents gets the good), which depends only on the declarations, and Wn is the

agent’s utility from the allocation itself (not from the payment): if agent n gets the good, then her

utility equals her valuation of the good. Otherwise, it equals zero. Thus, the agent’s utility depends

on the chosen allocation and on the agent’s own type, only.

38

The major difference between an auction environment and the off-line cluster scheduling envi-

ronment, is that the allocation in the former is based only on the declarations. The types in the

auction environment need not be revealed, though some information about them leaks. The price

the n-th agent pays is

Pn(~b) = −
∑

k 6=n

Vk(~b, bk).

Agent n’s utility from the allocation combined with the money paid is

Un(~b, θn) =Wn(~b, θn) +
∑

k 6=n

Wk(~b, bk)

so that when agent n is truth telling, her utility coincides with the social welfare function g
∑

,

Un(~b, bn) =

N
∑

k=1

Vk(~b, bk) (5.1)

and is assured to be maximized by the mechanism, no matter what the other real types are. Thus,

VCG ensures that g
∑

is IC in dominant strategies.

5.1.2 A VCG Mechanism For Off-Line Cluster Scheduling

If we try to implement VCG in our environment, we face a problem. Here, the mechanism outputs

a vector of work functions and a vector of output times. The agents’ utility does not purely depend

on the declarations ~b, but also on the real lengths ~θ of the other agents. If agent n lies and her job

exceeds the limit of calculated allotted time E
Q−
n , the beginning of the following (one or more) jobs

may be delayed. If a job is shorter than declared, others may begin processing before scheduled.

The agent’s utility from the allocation is −Tn(~b, ~θ). According to VCG, agent n should pay

Pn(~b) =
∑

k 6=n Tk(
~b,~b), and the overall utility in case agent n is truth telling, is

Un(~b, (bn, θ−n)) = −Tn(~b, (bn, θ−n))−
∑

k 6=n

Tk(~b,~b)

while the mechanism maximizes

−
N
∑

k=1

Tk(~b,~b),

39

which does not coincide with a single agent’s utility function. Therefore, the fact that the institution

maximizes its own utility function does not guarantee the optimization of the agent’s utility: It

should be possible to find a combination of ~b, ~θ and ~c, such that

Un((bn, b−n), ~θ) > Un((θn, b−n), ~θ).

In order to achieve an implementation in dominant strategies, it is essential to neutralize the

effect of θ−n on the utility function of agent n.

5.2 Hypotheses and Counter Examples

Could it be that the VCG payments are enough in order to insure the implementation of the g
∑

social welfare function in dominant strategies? Could it be that no matter what set of well-defined

job control tools we choose, a VCG mechanism would still implement the g
∑

social welfare function?

We claim that it is not so: The strength in which the mechanism implements the social welfare

function depends on the job control tools applied.

5.2.1 The Light VCG Mechanism: Counter Example 1

Let us introduce the light VCG mechanism:

• The prices paid reflect the sum of the other agents’ utilities, according to ~b:

Pn(~b) = −
∑

k 6=n

Uk(~b,~b) =
∑

k 6=n

Tk(~b,~b)

• The only job control tool applied is RNn(E
A
n , 1, θn), according to the triggers defined in sub-

section 3.5.3. Thus, jobs are run until their termination time, using the full CPU power. Of

course, if a job exceeds the time allotted to it, it will cause a delay in the beginning time of

its dependents (excluding itself, of course).

• The institution chooses the allocation such that g
∑

(~T) is maximal.

Under the light VCG mechanism, consider ~θ = (1, 1.1), ~c = (1). Obviously, in the case ofM = 1,

the heuristic of performing the shortest job first (similar to the STF algorithm in Tanenbaum [34]),

40

maximizes g
∑

. Assume agent 2 declares b2 = 0.2 < θ2, supposedly trying to beat agent 1 and get

to be the first to run.

Let us compare agent 1’s utility from declaring b1 = 0.1, to her utility from telling the truth. In

the first case, the static allocation would be:

X
o((0.1,0.2),(0.1,0.2)))
1 (t)=

1 0 ≤ t < 0.1

0 0.1 ≤ t

X
o((0.1,0.2),(0.1,0.2)))
2 (t)=

0 0 ≤ t < 0.1

1 0.1 ≤ t < 0.3

0 0.3 ≤ t

and ~T = ~Eo((0.1,0.2),(0.1,0.2)).

Hence agent 1 would pay the price of P1 = E
o((0.1,0.2),(0.1,0.2)))
2 = 0.3. The final allocation would

be

o((0.1, 0.2), ~θ) = RN2(2.1, 0, 1.1) ◦RN2(1.2, 1, 1.1)

◦RN1(1, 0, 1) ◦RN1(0.1, 1, 1)(o((0.1, 0.2), (0.1, 0.2)))

which means the final work functions are

X
o((0.1,0.2),~θ)
1 (t)=

1 0 ≤ t < 1

0 1 ≤ t

X
o((0.1,0.2),~θ)
2 (t)=

0 0 ≤ t < 1

1 1 ≤ t < 2.1

0 2.1 ≤ t

with ~T = ~Eo((0.1,0.2),~θ) = (1, 2.1). The first agent’s utility comes to

U1((0.1, 0.2), ~θ) = −T1((0.1, 0.2), ~θ)− T2((0.1, 0.2), (0.1, 0.2)) = −1− 0.3 = −1.3. (5.2)

41

If agent 1 decides to tell the truth, the static allocation would be:

X
o((1,0.2),(1,0.2))
1 (t)=

0 0 ≤ t < 0.2

1 0.2 ≤ t < 1.2

0 1.2 ≤ t

X
o((1,0.2),(1,0.2))
2 (t)=

1 0 ≤ t < 0.2

0 0.2 ≤ t

With output times ~T = ~Eo((1,0.2),(1,0.2)) = (1.2, 0.2).

The price agent 1 pays would be smaller:

P1 = E
o((1,0.2),(1,0.2))
2 = 0.2.

The final allocation would be

o((1, 0.2), ~θ) = RN2(1.1, 0, 1.1) ◦RN2(0.2, 1, 1.1)(o((1, 0.2), (1, 0.2)))

X
o((1,0.2),~θ)
1 (t)=

0 0 ≤ t < 1.1

1 1.1 ≤ t < 2.1

0 2.1 ≤ t

X
o((1,0.2),~θ)
2 (t)=

1 0 ≤ t < 1.1

0 1.1 ≤ t

with ~T = ~Eo((1,0.2),~θ) = (2.1, 1.1). The first agent’s utility comes to a value lower than in equa-

tion (5.2):

U1((θ1, b2), ~θ) = −T1((θ1, b2), ~θ)− T2(~b,~b) = −2.1− 0.2 = −2.3.

So truth telling is not a dominant strategy, and therefore, VCG payments combined with an arbitrary

set of job control tools, are not enough in order to implement g
∑

in dominant strategies.

42

5.2.2 The Light VCG Mechanism: Counter Example 2

In subsection 5.2.1 we proved that truth telling is not a dominant strategy in the light VCG mecha-

nism. The following example demonstrates that the light VCG mechanism does not implement g
∑

in Ex-Post equilibrium, either.

Take the light VCG mechanism, on the case where ~c = {1}, ~θ = {2, 1}. Assume agent 2 is truth

telling, b2 = θ2. If agent 1 tells the truth, b1 = θ1, then both agents are truth telling, job 2 is

executed first, and agent 1’s utility comes to

U1(~θ, ~θ) = −T1(~b, ~θ)− T2(~b,~b) = −3− 1 = −4.

If b1 = 0.5, job number 1 is executed first, and

U1((0.5, θ2), ~θ) = −T1(~b, ~θ)− T2(~b,~b) = −2− 1.5 = −3.5.

Therefore, VCG payments are not enough in order to implement g
∑

in Ex-Post equilibrium either.

5.3 VCG and Job control Tools

In this section we devise several methods which enable the implementation of g
∑

in the off-line

cluster scheduling environment.

5.3.1 The Harsh Punishment Mechanism

Let us introduce the Harsh Punishment mechanism:

• ~P = 0: no prices are paid.

• Instead of the standard triggers we defined in subsection 3.5.3, the institution performs

POSTn(min(E
A
n , Ln),∞, θn + ε)

for some positive value of ε, whenever bn 6= θn. This means that if an agent lies, she will

never get her output, and the execution of her job will be stopped (postponed to infinity, or

alternatively reniced to a zero share of the CPU), practically without altering the rest of the

schedule.

43

• The chosen allocation optimizes g
∑

.

Obviously, this mechanism implements g
∑

in dominant strategies, since truth telling is the only

way to get the output of the job, thus achieving a finite utility Un = −Tn(~b,~b) > −∞.

The harsh mechanism is the trivial solution. While this mechanism is just, scalable, and its

prices are known before the execution stage, it has no safety margins at all, and regarding its final

social welfare it is the worst mechanism that could be.

5.3.2 Other Implementations of the g
∑

Function

In the following lemmas, we prove that it is possible to implement g
∑

using either of the two job

control tools: RN or POST .

When discussing the case of bn < θn in the RN based mechanism, job n’s dependents are affected.

Those agents’ utilities depend upon agent n telling the truth, since the dependents’ beginning time

(excluding n’s, of course) is increased if agent n is lying downward. Due to this dependency in the

RN based mechanism, it is only possible to implement g
∑

in Ex-Post Equilibrium. With POST ,

though, it is possible to implement g
∑

in dominant strategies, since a downward lie does not affect

truth telling dependents at all.

We will prove that the utility of agent n cannot increase beyond her utility while telling the

truth, whether bn > θn or bn < θn, in those two mechanisms: in the POST mechanism, while no

assumptions on other agents’ declarations are made, and in the RN mechanism, while other agents

are assumed to be truth telling.

From the cases of bn < θn we devise the valid ranges for the parameters srenice, spost: ranges for

which the equilibria hold. It is left for the institution to choose the exact value for those parameters,

within the permitted range. Though any value within the range will do the same when all agents

are truth tellers, the choice of those values has an effect off-equilibrium on the final social welfare,

as discussed in subsections 7.1 and 7.6.

Since later on we deal with social welfare functions other than g
∑

, and even use notations relevant

to two social welfare functions in the same equations, let ~TΣ, ~UΣ, o∑

denote ~T , ~U, o accordingly, in

a system where the institution optimizes g
∑

.

44

Lemma 5.1 In a system with RN , CLOSE and EARLY , where the social welfare function is g
∑

,

and all other agents are truth telling, an agent cannot gain by declaring more than her real type.

Proof: ∀~θ,~b ∈ ΘN s.t. b−n = θ−n, bn > θn, we wish to prove that

UΣ,n(~θ, ~θ) ≥ UΣ,n((bn, θ−n), ~θ).

Agent n’s utility is

UΣ,n((bn, θ−n), ~θ) = −TΣ,n((bn, θ−n), ~θ)−
∑

k 6=n

TΣ,k((bn, θ−n), (bn, θ−n)).

All other agents are truth telling, so no alterations are made to A until time Ln, and the allocation

is still efficient at that time, according to lemma 3.26. Hence,

Ln = EA
n −

bn − θn

cm
,

where n ∈ NA
m , A = o

∑

((bn, θ−n), (bn, θ−n).

The final status is :

Q(∞) =
∏

k 6=n

EARLYk ◦ CLOSEm(Ln, E
A
n)(Q).

So agent n will get her output in the same time as if her job’s length was really bn:

TΣ,n((bn, θ−n), ~θ) = TΣ,n((bn, θ−n), (bn, θ−n)). (5.3)

Hence,

UΣ,n((bn, θ−n), ~θ) =

−TΣ,n((bn, θ−n), (bn, θ−n))−
∑

k 6=n

TΣ,k((bn, θ−n), (bn, θ−n)) =

−
N
∑

k=1

TΣ,k((bn, θ−n), (bn, θ−n)) = g
∑

(~EA).

Since the institution optimizes g
∑

(~EA), the agent’s utility function coincides with the social welfare

function, in a similar way to the original VCG utility function in equation 5.1, which does not depend

on other agents’ real types. Hence, bn = θn is the best declaration.

The following two lemmas will be used in the following proofs.

45

Lemma 5.2 ∀~x ∈ ΘN ,∀yn ∈ Θ,

∑

k∈N

TΣ,k((yn, x−n), (yn, x−n))−
∑

k∈N

TΣ,k(~x, ~x) ≥ −f
A
n

xn − yn

cm

where A = o
∑

((yn, x−n), (yn, x−n)), n ∈ N
A
m and f

A
n is defined according to definition 3.30.

Proof: Let A = o
∑

((yn, x−n), (yn, x−n)). Let us compare two allocations which share the schedule

of allocation A: A and A′. Let A′ fulfill ~x. A′ can be created from A by applying

∏

k∈FA
n

RN(Lk, 1, xk).

Then we can bound :

∑

k∈N

TΣ,k(~x, ~x) ≤
∑

k∈N

TΣ,k((yn, x−n), (yn, x−n)) + fAn
xn − yn

cm

where n ∈ NA
m .

When the total work to be done is bigger, it is impossible for a system which optimizes g
∑

to

reach a larger value for g
∑

(~E), as we prove in the following lemma.

Lemma 5.3 ∀~θ ∈ ΘN , if θn < bn ∈ Θ, then

∑

k∈N

TΣ,k(~θ, ~θ) ≤
∑

k∈N

TΣ,k((bn, θ−n), (bn, θ−n)).

Proof: Using lemma 5.2, we can bound :

∑

k∈N

TΣ,k(~θ, ~θ) ≤

∑

k∈N

TΣ,k((bn, θ−n), (bn, θ−n))− fAn
bn − θn

cm
≤

∑

k∈N

TΣ,k((bn, θ−n), (bn, θ−n))

where A = o
∑

((bn, θ−n), (bn, θ−n)), n ∈ N
A
m .

Lemma 5.4 In a system with RN , CLOSE and EARLY , where the social welfare function is g
∑

,

and all other agents are truth telling, an agent cannot gain by declaring less than her real type.

Proof: When agent n lies such that bn < θn, the institution performs RNn(E
A
n , srenice, θn), where

the value of srenice is a free parameter, left for the institution to define. ∀~θ,~b ∈ Θ
N s.t. b−n =

46

θ−n, bn < θn, let us calculate a range of values for srenice, sufficient to insure that lying upward is

not beneficial. srenice should be s.t. ∀0 < bn < θn, it holds that:

UΣ,n(~θ, ~θ) ≥ UΣ,n((bn, θ−n), ~θ)

−TΣ,n(~θ, ~θ)−
∑

k 6=n

TΣ,k(~θ, ~θ) ≥ −TΣ,n((bn, θ−n), ~θ)−
∑

k 6=n

TΣ,k((bn, θ−n), (bn, θ−n)). (5.4)

Let A := o
∑

((bn, θ−n), (bn, θ−n)) = o
∑

(~b,~b). Due to the use of RNn(E
A
n , srenice, θn),

TΣ,n((bn, θ−n), ~θ) = TΣ,n((bn, θ−n), (bn, θ−n)) +
θn − bn

srenicecm
(5.5)

where m is s.t. n ∈ NA
m . Hence, after substituting equation (5.5) in equation (5.4), we can tell that

we need to find a range for srenice, s.t. it satisfies

∑

k∈N

TΣ,k(~θ, ~θ) ≤
θn − bn

srenicecm
+
∑

k∈N

TΣ,k((bn, θ−n), (bn, θ−n)) (5.6)

Using lemma 5.2 together with equation (5.6), we get that it is sufficient for srenice to satisfy

srenice ≤
1

fAn
.

Note that the value of srenice depends only on the values of ~b, so it can be declared before the

execution stage, either for each job separately (by setting srenice for job n as
1
fA

n
), or together for

all jobs, according to srenice = mink∈N
1
fA

n
.

Theorem 5.5 In a system with RN , CLOSE and EARLY , it is possible to implement g
∑

in

Ex-Post equilibrium.

Proof: Follows immediately from lemma 5.1 and lemma 5.4.

An Implementation of g
∑

in Dominant strategies

Lemma 5.6 In a system with POST , CLOSE and EARLY , where the social welfare function is

g
∑

, an agent cannot gain by declaring more than her real type.

Proof: ∀~θ,~b ∈ ΘN , s.t. bn > θn, we wish to prove that

Un((θn, b−n), ~θ)− Un(~b, ~θ) ≥ 0.

47

Let us concentrate on Qm, the status of CPU m. Let n ∈ NA
m , A = o

∑

(~b,~b). Let NA
−n :=

NA
m\{n}. Since job control operators, which are invoked due to a lie of a certain agent, affect only

the status of the CPU that agent was allocated to, the dynamic status of CPU m1 depends only on

the static status for CPU m, and a combination of operators on that CPU or on jobs on that CPU.

Qm,dynamic =
∏

k∈NA
−n

{Ok, CLOSEm(Lk, E
Qk,−

k)}(Q)

where Ok stands for either POSTk or EARLYk, and Q
k,− stands for the dynamic status at the time

in which job k begins its execution.

T
Qfinal

Σ,n = TΣ,n(~b, ~θ) = TΣ,n(~b,~b). (5.7)

Equation (5.7) holds since: ∀k, POSTk affects only Ek and Tk. EARLYk affects only Tk. None

of these operators change Bn, En or Tn. The CLOSE operators performed before B
A
n will change

Bn and En, but not Tn. Even if En has changed by time Ln, Tn will only change if EARLYn is

applied. EARLYn is not applied, of course, since bn 6= θn. POSTn, which can also affect Tn is not

applied either, since bn < θn.

Had agent n told the truth, EARLYn would have been applied. In that case we would get:

TΣ,n((θn, b−n), ~θ) ≤ TΣ,n((θn, b−n), (θn, b−n)) (5.8)

and using equation (5.7) and equation (5.8) we get

UΣ,n((θn, b−n), ~θ)− UΣ,n(~b, ~θ) =

−TΣ,n((θn, b−n), ~θ) + TΣ,n(~b, ~θ)−
∑

k 6=n

TΣ,k((θn, b−n), (θn, b−n)) +
∑

k 6=n

TΣ,k(~b,~b) ≥

−
∑

k∈N

TΣ,k((θn, b−n), (θn, b−n)) +
∑

k∈N

TΣ,k(~b,~b) > 0.

The last inequality holds due to lemma 5.3.

Note that if agent n lies downward, the POST job control tool does not permit a change in Bk,

not in Ek for job k, which is allocated to the same CPU as n, at a later time. On the other hand,

1The status of CPU m was defined in definition 3.10.

48

when job n depends on jobs whose agents lied upward, the performed CLOSE operator decreases

Bn and En. The decreasing of Tn to match En depends on the institution performing EARLYn.

Thus, for every set of real types and declarations, EARLYn may decrease Tn in a different amount

of time: the possible gained time, defined as follows:

Definition 5.7 ∀~b ∈ ΘN , θ−n ∈ ΘN−1, g ∈ G, A = o(~b,~b), n ∈ N , let

DA
n (
~b, θ−n) := Tn(~b,~b)− Tn(~b, (bn, θ−n))

DA
n (
~b, θ−n) is the possible gained time when the institution optimizes g(~T), the agents declare ~b

and the other agents’ real types are ~θ. DA
n (
~b, θ−n) is the amount of time by which the beginning time

of job n can be made earlier due to lies of fellow agents.

Note that DA
n (
~b, θ−n) ≥ 0. Of course, the value of D

A
n (
~b, θ−n) actually depends only on the real

length of the subset of jobs that job n depends on.

Lemma 5.8 In a system with POST , CLOSE and EARLY , where the social welfare function is

g
∑

, an agent cannot gain by declaring less than her real type.

Proof: ∀~θ,~b ∈ ΘN , s.t. bn < θn, we wish to find a range for spost, which is to be determined by the

mechanism, s.t.

Un(~θ, ~θ) ≥ Un((bn, θ−n), ~θ).

Let n ∈ NA
m , A = o(~b,~b). Using the same notation as in the proof of lemma 5.6,

Qm,dynamic =
∏

k∈NA
−n and BA

k
>EA

n

{Ok, CLOSEm(Lk, E
Qk,−

k)}

◦POSTn(E
A
n , s, θn) ◦

∏

k∈NA
−n and EA

k
<BA

n

{Ok, CLOSEm(Lk, E
Qk,−

k)}(Q)

As in the proof of lemma 5.6, POSTk and EARLYk affect only the times of the agent k. CLOSE

operators performed on the set NA
−n

⋂

{k : EA
k < BA

n } will decrease Bn and En in the same amount,

independently of the value of θn. The only differences in agent n’s utility, between the case where

agent n is truth telling and the case of bn < θn, are due to the possible gained time and the affect

of POSTn.

49

We seek a range for spost s.t.

UΣ,n((θn, b−n), ~θ)− UΣ,n(~b, ~θ) =

TΣ,n(~b, ~θ)− TΣ,n((θn, b−n), ~θ) +
∑

k 6=n

TΣ,k(~b,~b)−
∑

k 6=n

TΣ,k((θn, b−n), (θn, b−n)) ≥ 0.

According to the definition of POSTn :

TΣ,n(~b, ~θ) = TΣ,n(~b,~b) +
θn − bn

cm
+ spost +DA

n (
~b, θ−n). (5.9)

−TΣ,n((θn, b−n), ~θ) =

−TΣ,n((θn, b−n), (θn, b−n))−DA′

n ((θn, b−n), θ−n) ≥

−TΣ,n((θn, b−n), (θn, b−n)) (5.10)

where A′ = o
∑

((θn, b−n), (θn, b−n)).

By definition,

UΣ,n((θn, b−n), ~θ)− UΣ,n(~b, ~θ) =

−TΣ,n((θn, b−n), ~θ) + TΣ,n(~b, ~θ)

−
∑

k 6=n

TΣ,k((θn, b−n), (θn, b−n)) +
∑

k 6=n

TΣ,k(~b,~b). (5.11)

Using equation (5.10) we get

−TΣ,n((θn, b−n), ~θ)−
∑

k 6=n

TΣ,k((θn, b−n), (θn, b−n)) ≥

−
∑

k∈N

TΣ,k((θn, b−n), (θn, b−n))

and using equation (5.9):

TΣ,n(~b, ~θ) +
∑

k 6=n

TΣ,k(~b,~b) ≥

∑

k∈N

TΣ,k(~b,~b) +
θn − bn

cm
+ spost.

When substituting back into equation (5.11) we get

UΣ,n((θn, b−n), ~θ)− UΣ,n(~b, ~θ) ≥

θn − bn

cm
+ spost −

∑

k∈N

TΣ,k((θn, b−n), (θn, b−n)) +
∑

k∈N

TΣ,k(~b,~b)

50

Substituting lemma 5.2, we get :

UΣ,n((θn, b−n), ~θ)− UΣ,n(~b, ~θ) ≥ (θn − bn)

(

1

cm
−
fA

′

n

cm′

)

+ spost.

where A′ = o
∑

((bn, θ−n), (bn, θ−n)), n ∈ N
A′

m′ .

So it is sufficient for spost to fulfill the following condition:

spost ≥ (θn − bn)

(

N

minj∈M cj
−
1

cm

)

≥ (θn − bn)

(

fA
′

n

cm′
−
1

cm

)

. (5.12)

Since the expression (θn − bn)
(

N
minj∈M cj

− 1
cm

)

is non-negative, we present one of the following

limitations to insure that spost fulfills the condition:

1. Let Hdiff ∈ R+ be an arbitrary parameter of the cluster. If θn − bn > Hdiff , the lie is too

large, and the execution is stopped (a limitation on the downward lie).

Before the execution stage, the institution needs to set spost s.t.

spost ≥ Hdiff

(

N

minj∈M cj
−
1

cm

)

. (5.13)

2. Let Hdiff ∈ R+ be an arbitrary parameter of the cluster. θn is limited: execution is stopped

when amount of work Habs is performed on a single job. The institution sets before the

execution stage spost s.t.

spost ≥ (Habs − bn)

(

N

minj∈M cj
−
1

cm

)

. (5.14)

Theorem 5.9 In a system with POST , CLOSE and EARLY , it is possible to implement g
∑

in

dominant strategies.

Proof: Follows immediately from lemma 5.6 and lemma 5.8.

5.4 Are Monetary Transfers Really Needed?

In this section we verify the necessity of the monetary transfers in the class of mechanisms which

we devised.

51

We have proved that a combination of job control tools and monetary transfers is sufficient to

implement g
∑

. Would a mechanism which uses job control tools the same way, but does not allow

monetary transfers, implement g
∑

as well?

Example 5.4.1 In a mechanism where

• the available job control tools are POST , EARLY and CLOSE, triggered according to sub-

section 3.5.3.

• ~P = 0.

• the institution maximizes g
∑

truth telling is not IC in Ex-Post equilibrium.

Proof: Take the case of c = {1, 1.5}, ~θ = {1, 1.01}, and assume b2 = θ2. If agent 1 tells the truth,

job 1 is located on c1, and

UΣ,1(~b, ~θ) = −TΣ,1(~b, ~θ) = −
1

1
+ 0 = −1.

On the other hand, if agent 1 declares b1 = 1.1, job 1 is located on c2, and

UΣ,1(~b, ~θ) = −TΣ,1(~b, ~θ) = −
1.1

1.5
+ 0 > −1.

That happens due to EARLY1 not being activated: since agent 1 lied, she does not get her

output as soon as she can, but rather as if θ1 indeed equaled b1.

52

Chapter 6

A General Social Welfare Function

6.1 introduction

In this chapter we propose a mechanism which implements general social welfare functions in the

off-line cluster scheduling environment.

g = −
∑

Tn is usually a practical social welfare function to implement, since the throughput,

defined as N
∑

N
n=1 Tn

, increases when g = −
∑N

n=1 Tn increases. The throughput is a good measurement

for the average efficiency1 of the use of the resource.

And yet, when the important thing is not average throughput, but dealing with bursts of tasks,

the institution often cares to implement a social welfare function other than g
∑

. A common example

is the make-span function, as indicated for example by Abdekhodaee and Wirth[1] by Dodin and

Elimam [12].

Definition 6.1 ∀l ∈ 1..N , the make-span of order l is a function makespanl : RN
+ 7→ R+ which

is defined as

makespanl(~T) = − max
k1 6=k2...6=kl∈N

l
∑

i=1

Tki
.

The common social welfare function is makespan1, which is actually −maxk∈NTk. Optimizing this

function means choosing the allocation such that the lowest utility among all agents is optimized.

1The term “efficiency” comes here in its everyday meaning, without connection to definition 3.6 of efficient alloca-
tions.

53

Since several allocations may optimize the make-span function, a common tie-breaker (instead of a

lottery, for example) is the lexical max function.

Definition 6.2 ∀~b ∈ ΘN , let

ms0(~b) = FUL(~b),

and ∀l ∈ 1..N let

msl(~b) = {A : ~EA ∈ argmax
A′∈msl−1(~b)makespan

l(~EA′)}

∀A ∈ FUL(~b) let us define the lexical-max function, lexicalmax : FUL(~b) :7→ R+ as

lexicalmax(A) = sup{l : A ∈ msl(~b)}

In other words, the set ms0(~b) consists of all the allocations which fulfill ~b. ms1(~b) ⊆ ms0(~b) is

a subset of allocations which minimize the time of the last job to be completed. ms2(~b) ⊆ ms1(~b)

consists of the allocations which, in addition to minimizing the time of the last job to finish, minimize

the time of the job to finish before last, and so forth.

Lexical max is a good social welfare function mainly when the institution is the employer of the

agents and not just the cluster owner.2 Another example of a social welfare function might be a

weighted make-span, or a weighted sum of utilities.

6.2 The Extended VCG (EVCG) Mechanism

We already know (from theorems 5.5 and 5.9)that the VCG payment function, combined with certain

job control tools, enables the implementation of the g
∑

function. Let us try and optimize a general

social welfare function when picking the allocation, while compensating the agent. We could pretend

that we offer the agent to participate in a mechanism which optimizes g
∑

, and then we offer her

a monetary compensation for changing the allocation to one that optimizes another social welfare

function. Under that spirit, let us examine the extended VCG payment function:

Pn(~b) = −Tn(~b,~b) + TΣ,n(~b,~b) +
∑

k 6=n

TΣ,k(~b,~b)

2Lexical max is less demanding than a precedence constraint, which Azar and Epstein [5] deal with. Under a
precedence constraint, certain (specific) jobs must end before another can begin, and the institutional utility depends
on the time the last one ended in. Under lexical max the order within the group of jobs does not matter, but the
institutional utility does depend on the completion of the whole set of jobs.

54

= −Tn(~b,~b) +
N
∑

k=1

TΣ,k(~b,~b). (6.1)

The extended VCG payment function is composed of three terms:

1. −Tn(~b,~b) a compensation for the time spent, assuming all agents are truth telling.

2. TΣ,n(~b,~b) the negation of the time that would have been spent, assuming all agents are truth

telling, had the social welfare function been gΣ.

3.
∑

k 6=n TΣ,k(
~b,~b) the payment that would have been inflicted, had the social welfare function

been g
∑

.

Note 6.2.1 Assuming all agents are truth telling, an agent’s utility from any social welfare function,

with the extended VCG payment, is identical to her utility from a system with a social welfare function

of g
∑

,

Un(~θ, ~θ) = UΣ,n(~θ, ~θ).

Definition 6.3 We refer to a mechanism which uses the extended VCG payment function as a

extended VCG mechanism, and in short: EVCG.

Lemma 6.4 ∀n ∈ N ,under the EVCG mechanism, in a system with g ∈ G, CLOSE and EARLY ,

where one of the following assumptions holds:

1. The system makes use of RN and everybody else is truth telling b−n = θ−n.

2. The system makes use of POST .

agent n cannot gain by declaring more than her real type.

Proof: ∀~θ,~b ∈ ΘN , s.t. bn > θn, we wish to prove that given either one of the assumptions,

Un((θn, b−n), ~θ) ≥ Un(~b, ~θ). (6.2)

Let us develop the right-hand side of equation (6.2). From the definition of the EVCG payment

function

Un(~b, ~θ) = −Tn(~b, ~θ) + Tn(~b,~b)−
N
∑

k=1

TΣ,k(~b,~b). (6.3)

55

Under assumption 1, in the same way that equation (5.3) is reached in the proof of lemma 5.1,

Tn(~b, ~θ) = Tn(~b,~b). (6.4)

Under assumption 2, equation (6.4) holds due to the same arguments used in the proof of

lemma 5.6, for equation (5.7).

Substituting equation (6.4) into equation (6.3) yields, under both assumptions,

Un(~b, ~θ) = −
N
∑

k=1

TΣ,k(~b,~b). (6.5)

Now let us develop the left-hand side of equation (6.2). When assumption 1 is valid, lemma 6.2.1

means that

Un((θn, b−n), ~θ) = −
N
∑

k=1

TΣ,k((θn, b−n), (θn, b−n)). (6.6)

When assumption 2 is valid, if agent n tells the truth, her output time may only decrease

relative to the static status: other agents, on whose jobs n depends, will decrease her output time

if an upward lie by them is revealed. A downward lie by the same agents will not change agent n’s

output time.

Tn((θn, b−n), ~θ) ≤ Tn((θn, b−n), (θn, b−n)) (6.7)

Since according to the definition of the EVCG payment function,

Un((θn, b−n), ~θ) =

{

−Tn((θn, b−n), ~θ) + Tn((θn, b−n), (θn, b−n))
}

−
N
∑

k=1

TΣ,k((θn, b−n), (θn, b−n)),

equation (6.7) means that

Un((θn, b−n), ~θ) ≥ −
N
∑

k=1

TΣ,k((θn, b−n), (θn, b−n)). (6.8)

Using equation (6.6) when assumption 1 is true, and using equation (6.8) when assumption 2 is

true, and using equation (6.5) on both cases, we get

Un((θn, b−n), ~θ)− Un(~b, ~θ) ≥

−
N
∑

k=1

TΣ,k((θn, b−n), (θn, b−n)) +

N
∑

k=1

TΣ,k(~b,~b) ≥ 0.

where lemma 5.3 is used for the last inequality.

56

6.3 An Implementation of a General Social Welfare Function

in Ex-Post Equilibrium

Lemma 6.5 Under the EVCG mechanism, in a system with g ∈ G, RN , CLOSE and EARLY ,

where all other agents are truth telling, an agent cannot gain by declaring less than her real type.

Proof: Since bn < θn, RNn(E
A
n , srenice, θn) is performed, where the value of srenice can be defined

by the mechanism, and A = o((bn, θ−n), (bn, θ−n).

∀~θ,~b ∈ ΘN , s.t. bn < θn, b−n = θ−n, we wish to find a range for srenice s.t.

Un(~θ, ~θ)− Un((bn, θ−n), ~θ) ≥ 0.

Due to the operator RN(EA
n , srenice, θn),

Tn((bn, θ−n), ~θ)− Tn((bn, θ−n), (bn, θ−n)) =
θn − bn

srenicecm

where n ∈ NA
m .

Using also note 6.2.1 we get

Un(~θ, ~θ)− Un((bn, θ−n), ~θ) =

−
N
∑

k=1

TΣ,k(~θ, ~θ)

+
{

Tn((bn, θ−n), ~θ)− Tn((bn, θ−n), (bn, θ−n))
}

+
N
∑

k=1

TΣ,k((bn, θ−n), (bn, θ−n)) =

−
N
∑

k=1

TΣ,k(~θ, ~θ) +
θn − bn

srenicecm
+

N
∑

k=1

TΣ,k((bn, θ−n), (bn, θ−n)) ≥ 0.

Using lemma 5.2, we get that it is enough for srenice to satisfy

θn − bn

srenicecm
− fAn

θn − bn

cm
≥ 0.

Hence, it is sufficient that srenice satisfies

srenice ≤
1

fAn
. (6.9)

The institution can declare a value for srenice for every job, or take srenice as

min
n∈N

1

fAn
. (6.10)

57

Theorem 6.6 In a system with RN , CLOSE and EARLY , the extended VCG mechanism can

implement any social welfare function g in Ex-Post equilibrium.

Proof: Follows immediately from lemma 6.4 and lemma 6.5.

6.4 An Implementation of a General Social Welfare Function

in Dominant Strategies

Lemma 6.7 Under the EVCG mechanism, in a system with g ∈ G, POST , CLOSE and EARLY ,

an agent cannot gain by declaring less than her real type.

Proof: ∀~θ,~b ∈ ΘN , s.t. bn < θn, we wish to prove that

Un((θn, b−n), ~θ)− Un(~b, ~θ) ≥ 0.

According to equation (6.1), the definition of the EVCG payment:

Un((θn, b−n), ~θ)− Un(~b, ~θ) =
{

−Tn((θn, b−n), ~θ) + Tn((θn, b−n), (θn, b−n))
}

−
∑

k∈N

TΣ,k((θn, b−n), (θn, b−n))

+
{

Tn(~b, ~θ)− Tn(~b,~b)
}

+
∑

k∈N

TΣ,k(~b,~b). (6.11)

Due to the operation of POSTn, when agent n is lying:

Tn(~b, ~θ) = Tn(~b,~b) +
θn − bn

cm1

+ spost + DA
n (
~b, θ−n) ≥

Tn(~b,~b) +
θn − bn

cm1

+ spost .

where n ∈ NA
m1
, A = o(~b,~b). Hence,

{

Tn(~b, ~θ)− Tn(~b,~b)
}

≥
θn − bn

cm1

+ spost. (6.12)

When agent n is telling the truth, in this system, her output time may only be decreased

(compared to her static output time), due to the revelation of other agents’ lies:

−Tn((θn, b−n), ~θ) =

−Tn((θn, b−n), (θn, b−n))−DA′′

n (θn, b−n), θ−n) ≥

−Tn((θn, b−n), (θn, b−n))

58

where A′′ = o((θn, b−n), (θn, b−n)). Hence,

{

−Tn((θn, b−n), ~θ) + Tn((θn, b−n), (θn, b−n))
}

≥ 0. (6.13)

Substituting equation (6.12) and equation (6.13) back in equation (6.11) we get

Un((θn, b−n), ~θ)− Un(~b, ~θ) ≥

−
∑

k∈N

TΣ,k((θn, b−n), (θn, b−n)) +
θn − bn

cm1

+ spost +
∑

k∈N

TΣ,k(~b,~b).

Using lemma 5.2

Un((θn, b−n), ~θ)− Un(~b, ~θ) ≥

θn − bn

cm
−
θn − bn

cm′
fA

′

n + spost,

where A′ = o
∑

((θn, b−n), (θn, b−n)) and n ∈ N
A′

m′ .

So it suffices that spost fulfills:

spost ≥ (θn − bn)

(

N

minj∈M cj
−
1

cm

)

≥ (θn − bn)

(

fA
′

n

cm′
−
1

cm
.

)

That can be accomplished using the conditions imposed in the proof of lemma 5.8.

Theorem 6.8 In a system with POST , CLOSE and EARLY , it is possible to implement a general

social welfare function g in dominant strategies.

Proof: Follows immediately from lemma 6.4 and lemma 6.7.

59

Chapter 7

Mechanism Qualities: Discussion

In this chapter we evaluate the EVCG mechanisms we suggested, mainly according to the properties

suggested in chapter 4.

7.1 Limitations on Input

The RN based mechanism can deal with any set of ~b, ~θ, and yet complete the execution of all jobs.

The POST based mechanism, on the other hand, must stop executing certain jobs, according to

either of the following two criteria:

1. θn > Habs: if at time t the job has performed a total work of
∫ t

0
Xn(t

′)dt′ > Habs, the execution

of the job is stopped.

2. (θn−bn) > Hdiff : if at time t the job has performed a total work of
∫ t

0
Xn(t

′)dt′ > bn+Hdiff ,

the execution of the job is stopped.

Using the first criterion will prevent the mechanism from performing certain long jobs at all.

Obviously, jobs with declarations larger than Habs cannot be submitted and guaranteed to be exe-

cuted fully. By determining Habs > maxn∈N bn in the realization stage, it can be verified that all

the truth-telling jobs can be completed. On the other hand, setting a large value of Habs means

that spost is increased accordingly, which in turn causes both the agents utility and the final social

welfare to decrease, in case agents lie downward.

60

Using the second criterion, every job declaration is admissible for every value of Hdiff , which

therefore can be determined in advance. Using the Hdiff criterion gains scalability.

7.2 Budget Considerations

The rent the institution gets depends on the implemented social welfare function. If g
∑

is imple-

mented, the rent is of course non-negative, since all payments are non-negative. Some social welfare

functions may bring a negative rent though. For example,

• g = −
∑

k∈N (Tk − T0)
2
.

• ~c = (1, 100).

• T0 = 100.

• ~b = (100).

Under an optimal allocation A, in which NA
1 = {1},

XA
1 (t) =

1 0 ≤ t < 100

0 100 ≤ t <∞.

A is efficient, though not Work-Function-Pareto efficient. The rent is negative:

P1(~b) = −T1(~b,~b) + T∑

,1(~b,~b) = −100 + 1 = −99 < 0.

As we can see, the rent can be made as low as desired, by setting the desired ending time T0 to an

appropriate value. Note that a function which is optimized by a Work-Function-Pareto non-efficient

allocation, is not a regular social welfare function.

Theorem 7.1 If the static allocation under the EVCG mechanism is Work-Function-Pareto effi-

cient, the rent is positive.

Proof: Under the EVCG mechanism, which allocates ~b under the static allocation A, the institution

receives a rent of

∑

k∈N

{

−EA
k +

∑

n∈N

EAΣ
n

}

= −
∑

k∈N

EA
k +N

∑

n∈N

EAΣ
n ,

61

where AΣ = o
∑

(~b,~b).

We need to show that if A is Work-Function-Pareto-efficient, then

∑

k∈N

EA
k ≤ N

∑

n∈N

EAΣ
n . (7.1)

Let cm′ := maxm∈M cm. Then for allocation AΣ, let us arrange the jobs on each CPU according

to length, shortest first:

NAΣ
m :=

∣

∣NAΣ
m

∣

∣

b
m,AΣ
1 ≤ b

m,AΣ
2 . . . ≤≤ b

m,AΣ

N
AΣ
m

N
∑

k∈N

EAΣ
k = N

∑

m∈M

1

cm

N
AΣ
m
∑

i=1

(

NAΣ
m − i+ 1

)

b
m,AΣ
i ≥

N
∑

m∈M

1

cm

N
AΣ
m
∑

i=1

b
m,AΣ
i ≥ N

1

cm′

N
∑

i=1

bi

where ~bm,AΣ is the vector of declared lengths of the jobs in NAΣ
m , sorted according to their order on

CPU m, under allocation AΣ.

On the other hand, for any allocation which is Work-Function-Pareto efficient, an agent cannot be

better off by executing her job earlier on the same CPU (according to corollary 3.3.1), neither can she

be better off by using another CPU, after its share of the work is done. Let Em,A := maxk∈NA
m
EA
k

denote the Ending time of CPU m. For a Work-Function-Pareto-efficient allocation A, ∀m ∈M,

Em,A =

∑

i∈NA
m
bi

cm
(7.2)

∀k ∈ N EA
k ≤ Em,A +

bk

cm

Hence, comparing the ending time of jobs to the ending time of CPU m′, we can divide the jobs

into two sets:

• I := {k|Ek ≤ Em′,A}

• and J := {k|Em′,A < Ek ≤ Em′,A + bk

cm′
}.

Summing over those sets, we get

∑

k∈N

EA
k ≤ NEm′,A +

1

cm′

∑

k∈J

bk

62

Due to equation (7.2), and since J ⊆ N\NA
m′

NEm′,A +
1

cm′

∑

k∈J

bk =

N
1

cm′

∑

k∈N

bk −
∑

k 6∈NA
m′

bk

+
1

cm′

∑

k∈J

bk ≤

1

cm′

N
∑

k∈N

bk + (1−N)
∑

k∈J

bk −N
∑

k∈N\NA
m′
\J

bk

≤
1

cm′
N
∑

k∈N

bk.

Hence, equation (7.1) holds:

∑

k∈N

EA
k ≤

1

cm′
N
∑

k∈N

bk ≤ N
∑

k∈N

EAΣ
k

and the rent cannot be negative.

Corollary 7.2.1 In an EVCG mechanism which implements a regular social welfare function, the

rent is non-negative.

Proof: Follows immediately from theorem 7.1 and from corollary 3.3.2.

7.3 Safety Margins

A POST -EARLY -CLOSE mechanism only has upper safety margins. An RN -EARLY -CLOSE

mechanism, on the other hand, does have safety margins.

7.4 Justness

The POST −EARLY −CLOSE mechanism is just, while the RN−EARLY −CLOSE mechanism

is not. Making sure liars do not benefit from other agents’ lies, makes the mechanism able of imple-

menting a social welfare function in Ex-Post Equilibrium. Justness is what makes the mechanism

able of implementing a social welfare function in dominant strategies.

63

7.5 Individual Rationality

So far, we have ignored the agent’s valuation of the execution of her job, Vn in equation (3.2), since

we assumed an agent who submitted a declaration cannot decide to withdraw from the game.

Now let us consider allowing agents to withdraw after the realization stage. A rational agent will

choose to withdraw if Vn < Tn + Pn. The valuation Vn is the agent’s secret. It does not depend on

the rules of the game, nor on the other agents. This valuation may depend though on an alternative

CPU which the agent has at her disposal (e.g. a slow, private, free of charge desktop).

As we mentioned in chapter 3, footnote 2, it is more common in the literature to assume the

agent’s secret is her valuation of the allocation rather than the length of her job. Taking the valuation

into account as a secret brings us back to the common notion of secret: the agent’s valuation of a

good.

We propose a mechanism built on top of the proposed EVCG mechanism, using two rounds:

After stage 3, the declaration stage, agents may withdraw without paying. They do not get their

jobs done, of course. In the next round, the agents are not allowed to change their declarations: the

allocation is calculated based on the previous declarations of those who stayed. The payment for

the staying agents is based on the staying agents only. Let “̂ ” denote functions and allocations on

the second round. Then,

P̂n(~b) = −T̂n(~b,~b) +
∑

k∈N̂

T̂Σ,k(~b,~b).

We wish to show that for the two-rounds EVCG mechanism:

• Indeed two rounds are enough: a rational agent who stayed for the second round, would get a

positive utility.

• Truth telling is in ex-post equilibrium.

Lemma 7.2 In the EVCG mechanism of two rounds, if agent n stayed for the second round, she

will have a positive utility, assuming everyone else is truth telling.

Proof: For truth telling agents, when all other agents are truth telling, every agent’s utility equals

g
∑

. The set of jobs to be executed only decreased after withdrawal, so

g
∑

(~EÂ) ≥ g
∑

(~EA)

64

where A = o(~b, ~θ) is the original allocation, and Â = ô(~b, ~θ) is the allocation formed for the agents

who chose to stay.

Hence, every truth telling agent who stayed can only be better off, now that some agents have

retired. If participating was individually rational before,

Un = Vn − Tn(~b,~b)− Pn(~b) > 0

it is all the more individually rational now,

Ûn(~b,~b) = Vn − T̂n(~b,~b)− P̂n(~b) =

Vn + g
∑

(~EÂ) ≥

Vn + g
∑

(~EA) = Un(~b,~b) > 0 (7.3)

Hence, there is no agent who stayed to the second round, but wishes to quit then: the maximal

number of needed rounds is two.

What about agents who withdrew? Could it be that it would be worthwhile for an agent to lie,

thus making it non-beneficial for another agent to stay, and improving her own utility by that?

Example 7.5.1 In an EVCG mechanism with either RN or POST , CLOSE and EARLY , it

may be worthwhile for an agent to lie, thus making it non-beneficial for another agent to stay, and

improving her own utility by that.

Proof: Let ~c = (1), ~θ = (1, 1), g = g
∑

. Assume agent 2 tells the truth. If agent 1 also tells

the truth, U1(~θ, ~θ) − V1 = U2(~θ, ~θ) − V2 = −1 − 2 = −3. If agent 1 lies and declares b1 = 2,

U2((2, 1), ~θ) = V2 − 1 − 3 = V2 − 4. If 4 > V2 > 3, agent 2 would withdraw. Then agent 1’s utility

would be U1((2), (1)) = V1 − 2, which is better than her utility from telling the truth.

To prevent this situation, a certain change in the output time of lying agents is required, if there

is a second round.

Lemma 7.3 There exists a two-round mechanism which allows withdrawing, for the RN based

EVCG mechanism, which is IC in ex-post equilibrium.

Proof: Assume b−n = θ−n. In order to make lying non-beneficial for agent n, we require:

Ûn((bn, θ−n), ~θ) ≤ Ûn(~θ, ~θ).

65

Note that the subset N̂ depends on the declarations; hence different agents may decide to withdraw,

depending on agent n’s declaration.

A liar who withdrew is not better off than a truth teller who withdrew. Both their utilities are

zero. Let us concentrate then on agent n who lies and stays.

From equation (7.3) we know that when all agents are truth telling, if agent n stayed, then

Un(~θ, ~θ) ≤ Ûn(~θ, ~θ).

It will suffice then to construct the mechanism such that

Ûn((bn, θ−n), ~θ) ≤ Un(~θ, ~θ)

which leads to the demand

−T̂n((bn, θ−n), ~θ) + T̂n((bn, θ−n), (bn, θ−n))−
∑

k∈N̂

TΣ,k((bn, θ−n), (bn, θ−n)) ≤

−
∑

k∈N

TΣ,k(~θ, ~θ)

In order to fulfill this demand, a lying agent must receive her output on the second round s.t. it

fulfills the following demand:

T̂n((bn, θ−n), ~θ)− T̂n((bn, θ−n), (bn, θ−n)) ≥

∑

k∈N

TΣ,k(~θ, ~θ)−
∑

k∈N̂

TΣ,k((bn, θ−n), (bn, θ−n)) (7.4)

In other words, the output time for a lying agent must be later than the output time for a truth

telling agent (of the same declaration) at least by the gain to the g
∑

social welfare function of the

declarations due to the second round.

In order to achieve that, the two-round mechanism can use, for example,

POSTn(T̂n(~b, ~θ),

T̂n(~b,~b) +
∑

k∈N

TΣ,k((θn, b−n), (θn, b−n))−
∑

k∈N̂

TΣ,k(~b,~b),

θn + ε) (7.5)

for some positive value of ε. Note that this POST operator is activated on top of the regular POST

operator which the EVCG mechanism uses: it is activated at time T̂n(~b, ~θ), when the agent was

66

supposed to get her output, according to the EVCG mechanism. Then another delay is added, to

insure that when other agents are truth telling, equation (7.4) is fulfilled.

Lemma 7.4 There exists a two-round mechanism (which allows withdrawing), for the POST based

EVCG mechanism, which is IC in dominant strategies.

Proof: In order to make truth telling a dominant strategy for agent n, we require:

Ûn((bn, b−n), ~θ) ≤ Ûn((θn, b−n), ~θ).

We concentrate again on an agent n who lies and stays.

From equation (7.3) and from the justness of the POST based mechanism,

Un((θn, b−n), (θn, b−n)) ≤ Ûn((θn, b−n), (θn, b−n)) ≤ Ûn((θn, b−n), ~θ).

It will suffice then to construct the mechanism such that

Ûn((bn, b−n), ~θ) ≤ Un((θn, b−n), (θn, b−n)).

which leads to the following demand on n’s output time in the second round:

T̂n(~b, ~θ)− T̂n(~b,~b) ≥

∑

k∈N

TΣ,k((θn, b−n), (θn, b−n))−
∑

k∈N̂

TΣ,k(~b,~b)

This demand will be satisfied by activating POST according to equation (7.5).

Note 7.5.2 The two-round mechanisms are hardly practical. The amount of time by which the

output is postponed depends on an optimization done on (θn, b−n). Hence, while the two-round

mechanisms are IC, they differ from the single-round EVCG mechanism by requiring heavy compu-

tations to be done whenever an agent lies. Their low computability makes them less practical.

7.6 Final Social Welfare

When comparing mechanisms on all the domain ΘN , some mechanisms are strictly better than

others.

67

• An EVCG mechanism which uses the CLOSE and EARLY operators has a better final social

welfare than an EVCG mechanism which does not.

• When we proved that the EVCG mechanism can implement a social welfare function, we

actually defined a range for the parameters spost and srenice. When the parameters are within

that range, the function can be implemented. An EVCG mechanism which uses the threshold

values for spost or for srenice has a better final social welfare than an EVCG mechanism which

chooses other values, which are strictly within the allowed range (a lower value for srenice or

a higher value for spost). The higher srenice is, the faster downward liars’ jobs are terminated,

and regular execution continues. The lower spost is, the sooner the execution of downward

liars’ jobs is resumed.

• An EVCG mechanism which sets a different value of spost,n for each agent according to equa-

tion (5.12), taking cm into account, has a better final social welfare than a mechanism which

uses one common value for all the agents, according to maxn∈N spost,n.

• An EVCG mechanism which sets srenice individually for every job, according to equation (6.9)

has a better final social welfare than an EVCG mechanism which uses equation (6.10) to set

srenice.

Setting an optimal value for Habs and Hdiff , on the other hand, is not that straightforward, but

involves a trade-off. Lowering those values enables setting a lower value for spost, which makes the

final social welfare better. At the same time, lowering those threshold values means that the range

Θ̂ on which the jobs get to terminate at all becomes smaller. Achieving a better final social welfare

for small lies comes at the expense of not being able to complete jobs of larger lies, as discussed in

section 7.1.

7.7 Complexity and Off-Line Calculations

The problem of calculating the best schedule is NP-hard. The time complexity of a naive algorithm

for calculating the best schedule, given the lengths of the jobs, is O((N +M)!).

We have proved here that the EVCG mechanism implements a general social welfare function,

under the assumption that the institution is indeed able to calculate (exactly) the optimal schedule.

68

It may seem that due to the computability issue, using the EVCG mechanism is not worthwhile,

but there are several scenarios in which it is practical:

1. When the typical job length is long, relative to the time it takes to calculate the allocation.

This time depends N and M , and not on ~θ:

(N +M)!tc <<

∑

θk
∑

cm

where tc is the time to calculate the social welfare function over one allocation, and is O(N
2)

(using a naive algorithm). The time to find the optimal allocation would also decrease drasti-

cally if the cluster was composed of identical machines c1 = . . . = cM , or of subsets of identical

machines. Subsets of identical declarations ~b would also make the task of finding an optimal

allocation faster to compute.

2. When the variance of ~θ is high. Then max
FUL(~θ) g(

~T (~θ, ~θ))−min
FUL(~θ) g(

~T (~θ, ~θ)) is relatively

high, and the institution can gain a lot from a truth revealing mechanism.

3. When Θ ⊂ N+, in a repeated game, it is possible to remember the optimal allocations for

certain sets of declarations.1

In all those cases, the calculations needed to find the optimal allocation end before the beginning

of the execution (off-line scheduling). The job control tools do not require any calculations. Thus,

even if agents lie, the dynamic allocation is known at once: the cluster needs not halt and wait for

decisions when a job control operator is activated.

7.8 Practical Limitations on the Implementation

When coming to implement the mechanism we suggest in this work, one may encounter several “real

world” problems:

1. The mechanism requires monetary transfers. In order to implement that, the agents are

required to be economic units. If they work for the institution which owns the cluster, this

may not be the case.

1Thus replacing the complexity of calculating the optimal schedule with memory complexity.

69

2. The mechanism we suggest counts on the institution’s ability to enforce the optimal schedule.

In real life, this ability may be limited, due to the agents having direct access to the cluster. If

the agents have direct access to the cluster, the strategy of reporting the job’s true length and

submitting it to the institution for allocation may be inferior to submitting the job directly to

a CPU of the agent’s choice.

70

Chapter 8

Summary

In this work, we presented the problem of Off-Line Cluster Scheduling, where the institution has the

ability to set the allocation of jobs to CPUs, but it does not know the jobs’ lengths. The institution

also has the ability to affect the allocation in a limited manner after the execution has begun, using

job control tools. The agents, each owning one job, have a certain utility from the completion of

the execution of jobs, as well as from monetary transfers. The institution has a utility from the

completion of the jobs, which is a social welfare function.

We devised a mechanism, in which the agents’ best strategy is telling the institution what the

real length of their job is. We formulated two variants of this mechanism:

1. A mechanism which uses the job control tool POST , and implements a general social welfare

function in dominant strategies. This variant is just, but it only has upper safety margins, and

it poses limitations on the input.

2. A mechanism which uses the job control tool RN , and implements a general social welfare

function in Ex-Post equilibrium. This mechanism has safety margins, and it does not pose any

limitation on the input, but it is not just. This mechanism is more suitable to a situation where

the agent herself does not know exactly the length of her job, but instead she has distributional

information over it.

We also proved that both monetary payments and verification using job control tools are essential

in order to implement a social welfare function. A mechanism similar to what we suggested, only

71

without monetary transfers, will not implement even the “sum of utilities” function. A similar

mechanism which uses monetary transfers, but does not use the job control tools in order to verify

that the agents are truth telling and punish them otherwise, will not implement that function either.

The mechanisms we suggested are not IR. There exists another mechanism in which agents

can withdraw before paying, which implements a general social welfare function. In a variant of

the mechanisms we suggested, we enable the agents to withdraw from the game once they know the

price they will have to pay. This variant is individually rational, and still implements a general social

welfare function with the same level of incentive compatibility, as the original variant it sprung from

(either RN or POST based). This mechanism it includes on-line calculations of a schedule when

agents lie, though, in order to determine the severity of the punishment.

The rent in those mechanisms is non-negative if the static allocation is Work-Function-Pareto-

efficient.

In this work we proved that it is possible to implement a general social welfare function in the

off-line cluster scheduling environment, by supplying a family of such mechanisms.

72

References

[1] A. H. Abdekhodaee and A. Wirth. Scheduling parallel machines with a single server:

some solvable cases and heuristics. Computers and Operations Research, 29 (3), 2002.

[2] A. V. Ackere. Conflicting interests in the timing of jobs. Management Science, 36(8),

1990.

[3] A. V. Ackere. The impact of conflicting interests on the choice of an appointments system.

Belgian Journal of Operations Research, Statistics and Computer Science, 31 (3-4), 1992.

[4] E. Altman and N. Shimkin. Individual equilibrium and learning in process sharing sys-

tems. Technical Report CC212, Department of Electrical Engineering, Technion, October

1997.

[5] Y. Azar and L. Epstein. On-line scheduling with precedence constraints. In Proc. of 7th

SWAT, pages 164–174, 2000.

[6] M. Azizoglu and O. Kirca. Tardiness minimization on parallel machines. International

Journal of Production Economics, 55 (2):163–168, 1998.

[7] A. Barak, S. Guday, and R. Wheeler. The MOSIX Distributed Operating System, Load

Balancing for UNIX, volume 672. Springer-Verlag, 1993. http://www.mosix.org.

[8] A. Barak, O. La’adan, and A. Shiloh. Scalable cluster computing with MOSIX for LINUX.

In Proc. Linux Expo ’99, pages 95–100. Raleigh, N.C., May 1999. http://www.mosix.org.

[9] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An architecture for a resource man-

agement and scheduling system in a global computational grid. In The 4th International

73

Conference on High Performance Computing in Asia-Pacific Region (HPC Asia 2000).

IEEE Computer Society Press, USA, May 2000.

[10] E. Clarke. Multipart pricing of public goods. Public Choice, 18:19–33, 1971.

[11] L. Cons, K. Berry, O. Bachmann, et al. Bash reference manual: Job control.

http://www.gnu.org/manual/bash-2.05a/html chapter/bashref 7.html.

[12] B. Dodin and A. Elimam. Integrated project scheduling and material planning with

variable activity duration and rewards. IIE Transactions, 33 (11):1005–1018, Nov. 2001.

[13] J. Du and J. Y.-T. Leung. Minimizing total tardiness on one machine is NP-hard. Math-

ematics of Operations Research, 15:483–494, 1990.

[14] B. Falsafi and M. Lauria, editors. REXEC: A Decentralized, Secure Remote Execution

Environment for Clusters., volume 1797 of Lecture Notes in Computer Science. Springer,

2000.

[15] D. G. Feitelson and A. M. Weil. Utilization and predictability in scheduling the IBM SP2

with backfilling. In 12th Intl. Parallel Processing Symp., pages 542–546, 1998.

[16] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[17] J. C. Harsanyi. Games with incomplete information played by ’Bayesian’ players. Parts

i-iii. Management Science, 14:159–182, 320–334, 486–502, 1967-8.

[18] R. Holzman, N. Kfir-Dahav, D. Monderer, and M. Tennenholtz. Bundling equilibrium in

combinatorial auctions. mimeo, Technion, http://iew3.technion.ac.il/ moshet/rndm11.ps,

2001.

[19] L. Hurwicz. On allocations attainable through Nash equilibria. Journal of Economic

Theory, 21:140–165, 1979.

[20] U. Kjems. Jobd. http://bond.imm.dtu.dk/jobd/.

[21] D. A. Lifka. The ANL/IBM SP scheduling system. In D. G. Feitelson and L. Rudolph,

editors, IPPS’95 Workshop: Job Scheduling Strategies for Parallel Processing, pages 295–

303. Springer, Berlin Lecture Notes in Computer Science LNCS 949, 1995.

74

[22] M. Livny et al. Condor - high throughput computing. http://www.cs.wisc.edu/condor/.

[23] A. Mas-Colell, M. Whinston, and J. Green. Microeconomic Theory. Oxford University

Press, 1995. Chapter 23: Incentives and Mechanism Design.

[24] J. A. V. Mieghem. Dynamic scheduling with convex delay costs: The generalized cµ rule.

The Annals of Applied Probability, 5(3):808–833, 1995.

[25] K. Mount and S. Reiter. The informational size of message spaces. Journal of Economic

Theory, 8:161–191, 1974.

[26] R. B. Myerson. Incentive compatibility and the bargaining problem. Econometrica, 47

(1):61–73, 1979.

[27] P. Naor. The regulation of queue size by levyying tolls. Econometrica, 37:15–24, 1969.

[28] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior,

35:166–196, 2001.

[29] D. Nowak. ASCI at Livermore- Alliances. http://www.llnl.gov/asci/alliances/. U.S.

Department of Energy under Contract W-7405-Eng-48.

[30] J. Root. Scheduling with deadlines and loss functions on k parallel machines. Management

Science, 14:460–475, 1965.

[31] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: An economy driven job

scheduling system for clusters. Technical report, The University of Melbourne, July 2002.

http://www.cs.mu.oz.au/~raj/grids/papers/libra.pdf.

[32] J. A. Stankovic and I. S. Sidhu. An adaptive bidding algorithm for processes, clusters

and distributed groups. In Proc. of 4-th International Conf. on Distributed Computing

Systems, pages 49–59. IEEE Computer Society, 1984.

[33] W. R. Stevens. Advanced Programming in the UNIX Environment. Addison Wesley

Longman, Inc, 1993.

[34] A. S. Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall, Inc.

Englewood Cliffs, New Jersey 07632, 1987.

75

[35] L. Torvalds et al. Debian GNU/linux - the universal operating system.

http://www.debian.org/.

[36] L. Torvalds et al. Linux kernel. http://www.kernel.org/.

[37] W. Vickrey. Counterspeculations, auctions, and competetive sealed tenders. Journal of

Finance, 16:15–27, 1961.

[38] M. P. Wellman, W. E. Walsh, P. R. Wurman, and J. K. MacKie-Mason. Auction protocols

for decentralized scheduling. Games and Economic Behavior, 35(1):271–303, 2001.

[39] D. Wiltzius. Proposed 2000 and 2001 Livermore computing services to ASCI Alliance sites.

http://www.llnl.gov/asci/alliances/services to alliances.html, 2000. U.S. Department of

Energy under Contract W-7405-Eng-48.

76

����������� ���	��
�
� ��������� ���	��� �����	��� �������������

��� ��! ���
"��#! $
%! &��	�'��� �(��
#��� &������*)+�

,.-0/21�3 465879-:3

,.-0/���� 4 �������	�
� � -������� 4
� - -87 � -������ 5 -�� -�������� 7 /��

�����
� � / � -���� 3 ��� ,.- -��9/ � �
��� 4

!#"%$'&)(+*,!.-0/�12$

346587
7�9;:�<=9>7=5@?BAC3EDFG9H?�AC<=9;I�A0589;ACJ�K=?B9
K=ACLDJ�9>3NMPOBACQRJ

7�AS?T58JU?VFU<'ASMPJ�7PJ�:

WYX[Z]\�^ _>`abX^

9;4.3[?BAC9]ACQ2589c58d0eM,fg5@eEJ
—

fg58ACdheEMPF�MPdiOB9j?BQk58F
l2mYmon 3N4P583:�p FUpNACI QrqsOB?B7�t 4u3ED4

AC<=O diAhD�583E58J�OVf83 3 qhD 7Pe 3EDF�: FU?BL[d 3N<'I�J�F
7PAS?T58J�?VFU<'AsM�J�7�J�9>7PAC7=DACI�A � f8AC:�F 7PACd0e�587PFG7�3NQROBJ�:

������� �
	����

7PAC3N:�L[:�F�D 587

7�AC3N:�L[: FU?TD<=F

�G� 5�� 5�� ,E� -6�

x ��� �����	��
�� ������

xii ��� ����� � � ��� �

xv ��� �����������	� � � ��� �

� �"! � �
$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$('*)%+-,�'*."/0+�12,3'*.345'*6�7%+ 8�$ 8

9 � �	��� �:�;� �2!��	
�< =
> $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$?4@,BA5'*CEDF'*C-GH)%GHA&6�IJC #K$ 8
> $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$LD*12'*MB'ND*OJGH1 #P$ 8�$ 8
> $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$0M�A&QSR2DF' #P$ 8�$ #
T $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$UD*'*OJG�GHCVR�GHAXW A@C�'�D*C�M�'F'VY IJZ['F'\Y D*C-Z['F' #P$ 8�$]
T $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$^4@GHMB'*7_GHA&6�IJC #K$ #
T $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$`M�'*QV1 #P$ #K$ 8
a $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$UD*G�A&C�GbIc'-D*C�deZ[Q #P$ #K$ #
a $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$`4@+�GHG�C^R2DF' #P$ #K$]
a $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$?4@GH.�IJ6�C^Z['gfBIJQhZiIjDF'*C-G�)�+kQ�Ic'*1&Zi/07&'*GHlBQVGHMB' #K$]
a $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$3+�M�GHmn+ #P$]o$ 8
p $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$qDF'F'*A@C^GH7eZi.�DF'*C-GH) #P$]o$ #
p $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$rDF'F'*A@CEDF'*C-GH) #P$]o$]
p $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$sMB'*6�QVZtG�'gZ[GHC #P$]o$ >
u $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$k4@GHv�O5fw7%M�.�/�+k4@GHZ[Z['gf�+r4@GH12'F'*A&Cr4@GH1�C�)�C #P$]o$ T

vi

� $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 7eM�)2'*.�C^7%'gdeZi6 +^7%Zi.�A #P$]o$ a

��� ��!��2� �

8�� $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$,�'*OJGH+rGH1�."Q]o$ 8
8 8 $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 7&'*QNlBA@+] $ 8�$ 8
8 # $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$ 7%'*ZiG�/ G] $ 8�$ #
8 > $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$ 7%'F,�'*.�/�.�+�deGHZ IjGHZ f]o$ #
8 T $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$ 7%'F,�'*."/ .�+�deGHZiI GHZ f�Z`+�G�lBGHQ\'gde1�GHQ] $ #K$ 8
8 a $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$ 7%'F,�'*."/ .�+�deGHZiI GHZ f�Z`7eG�C�IJM;+�MB,Bmn+] $ #K$ #
#�8 $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$ 7%Zi/�'*7 7%'*G�lBA&12'*v]o$]
#�8 $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$ 4&GH1�A@6�I5+kZ Ij7eZ[/�'*7e+E7%'*G�lBA&12'*v] $]o$ 8
#�8 $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$ 7eGH7%M�."6L+�6�'F'*M] $]o$ #
a $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$ M�GbIJGV45'gI5G�G�� +�/�GH1�Cr+-C-mn'F,]o$ >
# p $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$ /�,BG�C-.	� MB'*lB+
� +-C-mn'F,] $ > $ 8
# u $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$?DF'*1�m	1�C�+]o$ T
u $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$r4&G�M�GH6 C] $ T $ 8
u $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$^7%Gbd\deO +�QVlBA@+] $ T $
u $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$ +�deGHZ IjGHZ f 7%A&1�)�+] $ T $]
]�� $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$:A@6"IJC�+] $ T $ >
] 8 $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$ 7%'*GHm	deM deOJQ]o$ a

��� ��� ��!�<��2� ��� �2�2�2���2� 9
]] $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$_4&G�lBGHM�C-7%Z 7%'*C-G�QV7 > $ 8
] > $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$:."GHlBA@7hGHZ '*A&GHI > $ #
] > $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$ DF'*6�deGH.3GHZ 'gI > $]
] T $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$L/�'*."A M�GH6 C > $ >
] a $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 7%'*1�mn'*+ > $ T
] a $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$ deZiA@+kZi/07&'*Zi.�mnC^M�,�/ +ER27%'*C-Zi7%OJ+ > $ a
] a $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 7%GHvB'*O 7%GH7eM�."6L+�6�'F'*M > $ p

vii

��� ����� ��
�� ���2�	� ������-� �2�2�0� � � �N� � � � � �

] u $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$sOJ.�'*M�m '-A&M�QVZiA Y G�M�A&G�'�4&I Zi/;DF'*1�m	1�C�+ T $ 8
] u $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$ +�C�,BA@+ T $ 8�$ 8
] � $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$ 4@GH.�I56 CrZ['gfBIJQSZ Ij4@,�A@'*CEDF'*C-G�)eMB'*.�/0m��HA@'�DF'*1�m	1�C T $ 8�$ #
> � $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$ 7eG�,Bm	1e+-C-mn'F,�'N+�6 1�+ T $ #
> � $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 8X7eG�,Bmn1e+�C�mn'F,	� m��HA@'�I��H/;D*G�,B/ +^DF'*1�mn1�C�+ T $ #K$ 8
>] $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ #c7eG�,Bmn1e+�C�mn'F,	� m��HA@'�I��H/;D*G�,B/ +^DF'*1�mn1�C�+ T $ #K$ #
>] $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$37%'F,�'*."/ .�+�deGHZiI GHZif�'-m��HA@' T $]
>] $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 4&G�,B.�f�+k4@GbIJ12'*/ +^DF'*1�m	1�C T $]o$ 8
> > $%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$

g
∑

+�G�lBA&12'*v�+kZ Ij4@GHv�Oc'*1e4@GHCN' IJG�G T $]o$ #
T 8 $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$	�*7%'*l�'*6 1@7eC-QV. 7%'*GHv�O5f�+^7%'*M�.�/�+�+r4@QV+ T $ >

� � ��� � ��
 ����� ��
�� ���2�	� ���H��-� �2�2� �

T] $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$L+-C�,BA@+ a $ 8
T�> $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$� C��Hm	A5'���."6 M�'*C�+rm��bA5'�DF'*1�m	1�C a $ #
T p $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$,B.�/�G�,B.3Z[A%IJC^G�'F'gIJ. 7eG�ZiZ f37eG�7eM�.�6L+�6�'F'*M 7eGHG�lBA&12'*v0ZiI 45'gIJGHG a $]
T u $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$:7%'gdeZ['gI 7%'*GHm2deM�deOJQV.37eG�ZiZ f37eG�7eM�.�6L+�6�'F'*M 7eGHG�lBA&12'*v0ZiI 45'gIJGHG a $ >

� � � � � !�� ��� �2�2�2���2� � ��
 � � �

a � $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$kdeZiA@+kZi/07&'*Zi.�m	C p $ 8
a 8 $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$:."GHlBA@7hGHZ '*A&GHI p $ #
a] $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$ DF'*6�deGH.3GHZ 'gI p $]
a] $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$ 7%'*1�mn'*+ p $ >
a > $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$LdeM�v�+k7&'*GHZi12'*GHlBM p $ T
a p $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$ 7eGHvB'*OJ+r+-QNlBA@+�.37%GH7eM�."6L+�6�'F'*M p $ a
a u $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$j4&G�1�'F'*A@CrGH7%Zi.34@GH."'gIJG�6 '�7%'*Gbf�'*."GHO p $ p
a � $%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$&$%$%$%$&$%$%$%$%$j4@'gIJGHG�+kZi/07&'*GbIJ/ CE7&'*Zi.�m	C p $ u

� � � ��
 � � �

� � � �	��� � � � � ��� �

viii

x
� ������

ix

7������ �

."'gIJG�6�."Q�IJC^D*7%'gIJM�Zt,�C�'*/0+-,�'*.�/�+k/�'*lBGH.	� MB'*lBZt$ /�lB.�Z`7e6 Q ."'gIJG�6�7%,�'*."/tIJGV7%'*GH1�A@6"I M�v�OJC-Cr7e6 Q Zif�Z
QVlBC-1 Z['gfBIJQV+ $ 4&G�.�IJ6 C Z['gfBIJQ R�G�)�'gf�G�M^D*vB'*QV.h4&G�Zi+-'*1�C-+ Y 7%'*12'gI 7%'*C-l�'*/EGHZi/�.h4&G�,B.�/�C M�v�OJC-C .�f�MB'*C-+
$ 7eG�1�A@6�I +�7&'*QsZ I GHdeM�v^/�,�GHC(QVGH+ /�lB.�Zk7%GH1�A&6�I Z f�ZkIJGbI +�,�'*.�/�+(7%'*C�f $ 4@G�'*OJC ,BOc'*C Z I '*7%'*Zi/�.�.

$ +�Z['*/w+�Z Ij.�' IJG�6�+r7&,�'*.�/�CrdeZ[v�+r7eZ[.�A D*C�)�I Z fBf3GHM�QV1�GHZ`D*vB'*QN. 7%,BMB'*G\7%GH1�A@6"I Z Ij7eZi/�'*7e+
+�l�'*M0Q\'*+^$ 7%'*G�1�A@6�IJ+ 7&'*Zi/�'F7_Z I 7eG�ZiZ f 7eGH7%M�."6 +-6 'F'*M;7%GHGHlBA@12'*v � Q\'*+r'*7eZ[/�'*7 7eQE.�M�C-Z +�l�'*M;,�Oc'*C-+
7eZi."AsG�1�C-)X4@'gf�O 7eQ(M�/)�C-Z�7&'glBM�ZLG�'gIJ/k,BOc'*C�+(Y Z IJC�Z $ 4@GH.�IJ6�C�+ Zi/ 7%'F,�'*."/ +jDF'*C-G�)XG�,�GJZi/rDgf^7%'gIJ/ Z
7eZi."A_G�1�C-)\Z I QVGH+�I +�G�lBA&12'*v0Z f3'*QSY deZiv�+k7eZi."A_G�1�C-)e,B/�1�C ��M�7%'*G�. M�6�'*QVC-+kdeZiv�+k7eZ[.�A D*C-)\7%QSY deZ[v�+
7e/�,BZ3,BOc'*C�+hZ[/LY G�.�deGHC 6 MB'*QV.kZ['*/�v�Z G�,�fBIsQNG�+ +-GH/ ."+ $ 7%'*C�Z IJC D*+�Is4&G�C�'*Z IJ7e+-'&7%'*G�1�A@6�IJ+hZ I deZiv�+

$ '*7%'gIJM�.LD*GHQNI /�,�GHC R�."'gIJGH6 +r7&'*,�'*.�/;ZiI G�7eC-QV+^Dgf�MB'*Q 7eQ
7%'F,�'*."/wZ I(GH7eC�QV+^Dgf�MB'*QhZ[/;M�GH+�lB+�Zt7&'*v�G�,B/�CE7%'*G�1�A&6�IJ+^4&+�. M�IJQh4@GH12'*1�m	1�CrZ I(+�6 v IJC 4&G�/ G�lBC^'*1�Q
�[f 7%'*12'gIJ+^7%'F,�'*."/ Z0.�IJ6 CED*C-)eZ Ij+�QVlBA&+^D*C-)�Z G�,Bf '*Z[Qh7%'*M�+�lB+�. IJC-7\IJC ,BOc'*C�+�I(,�'*/�.LY D*+�Z Ij."'gIJGH6 +
7%'F,�'*."/ + /�'*lBG�.k4@M de.k4&G�C�'*Z IJ7%.^D*+h4&GHf�'*M fr'*ZiQ 4@GH12'*1�m	1�C $ G�+�IJZ fk7%GH7eM�.�6 +�6�'F'gM 7eG�GHlBA@12'*v .�M�C-CSQ\'*+�I
Z I_+-GHG�'*1�GHIJZ 7%C-G�'*OJCL+�deGHISQ\'*+�7%'F,�'*.�/�.;+�deGHZ I_GHZifw$ /�'*lBGH."+ � Zi+�C�.07%'F,�'*.�/�.;+�deGHZiI_GHZ ftZ I_4@C�'gIJGHG�.0D*+-'
7eA@OJv�+ � D*+S+�QVlBA&+�+_7eQ 4@GH1�IJC-+h+�deGHZ I GHZ f�Z37%'*QVC-mn'F,($ 4&G�G�'*v�lB+hdeZiv�+SGH1�C-)cZ IU'*Q 7eG�7eZi6 7e+ +�QVlBA&+
Z I '*A&Z[6 7e1�deA@+kY �b+�G�GH6�, ��� M�7%'*GNM�6�'*QVCrD*C�)�Z 7%C-G�'*OJCk+�,�'*.�/ �iIJC-+kZ I +�GHG�6 , Y 7eC-G�'*OJCk+-,�'*."/`Z I +�/�'*lBGH.
'*Z['*lBG�1�. 4@GHM�/�v;7eM�GHm	Oj'*Q_Y �b+�1�deA@+ ���-,B.�/�C-+r7%'*ZiG�/ Ge7e1�deA&+kM�CN'*Z fLY 7%C-G�'*OJC^+�,�'*.�/;Gbf�M�lBZ`+�1�vB'*C-+E,B.�/�C-+
45,BA@'*C_D*C-)�.�deZiv�+SD*7eC $ �H+�M�GHm	O����VM�7%'*G@M�6 '*QVC D*C-)�Zw'F,B/�'*1�I 7&'*,�'*.�/ ZiI 45,BA5'gCS/�'*lBG�. G�,BG%Z[/ ,B.�/�C-+hZ I
+�deG�Z ISGHZif�Z +-C-mn'F,`Q\'*+ Y �b+-C�,BA@+ ����+-,�'*.�/�+ Z I_45'*GHOJ+ D*C�)�C M�7%'*G�45,BA@'*C�QVZ I D*.�'gC-f �[QEY Dg1�f�'*7%C-+�D*C M�7%'*G
+�deG�Z IJ+ GHZ f`Zif�Z � 7&'gI5C�+r$ 7eM�6 Q^'*Qk'*)�7ef�M�/�C-CLMB,B/�+�Z:4&GHG�'gIJ/ +�deGHZ IJ+ GHZifw$ deZiv�+ 7%Zi.�A GH1�C-)-7eQk+�1�IJC-+
ZiA&IJC G�'F' IJ._Y D*G�G�,B/ $ 7%GH.�deG�C_+�QVlBA@+_7eQVG�lBC 7eC�mn'F,�f �&4&G�.�f�MB'*C 4&G�."'gIJGH6 .r4@Gbf�'*M�fr4@1�GHQNI Q\'*+ 7%'F,�'*."/ .

$ '*ZiQh+�deGHZ I G�Z f�. IJC-7\IJ+�Z �[MB'*l3D*G�Q
M�IJQkY m��HA@'�DF'*1�m	1�Cw7e6 7S$ m��HA@'�� �HOJ."'*M�m�A&M�QVZiArGHM�A@G�' �"4@'*ZiI57rZ Ih+�.�6 M�+�f G�'*1�. 4&G�/ G�lBC '*1�QL'*7%'*QL45'*Z IJ7e+

x

7eG�GHlBA@1�'*v 7eQj,�Oc'*C-+ ."M�C-CjY 7%'gdeZ['gI 7%'*G�m2deM�d\OJQV.^7%'*Z[/�'*7%+ 4@'gf�O?7eG�GHlBA&12'*v 7eQ 4&IJGHG�C_7%'*."M 7%'*."GH."OJ.
7e."GH.�OJ.�IhDF'F'*GHf�Cr$ +�G�7%'*M�.�6 Z I_7%'*Zi/�'*7%+�45'gf�OSG�v Zi/ 7e6 Qk7eGH1�A@6"ISZ I_4@'*ZiIJ7e+�7eQk/ .�'*A@'�Y 7&'*Zi/�'*7%+L4@'gf�O
Z I GH7%C-QV+kD f�MB'*QV. +�G�'*Z[7h7%'*G�+�Z 7e6 QE7eG�1�A&6�I Z I +�7eZi/�'*7_+�G�'gIJ/t4&G�.�IJ6 C-+LZ 'gfBI5Q Z I DF'F'*A@C QVZi+kDF'*C�GH)�+
.�ZiI5. 7%'*Z['*/�v:7\deGHA@1�. 6�M�f�+0IJG Y 7%'F,�'*."/ +w/�'*lBG�. �[Zi+-C-. A@MX+-Zim	7eCwM IJQ3GHdeM�v /�,BGHC Y +�GH7&'*M�."6`Z IED*+�GH7&'F,�'*.�/
Y +�1�deA&+ DF'*1�m	1�C �5,B.�/�C-+ 7%'*ZiG�/ G 7e1�deA@+�.h,B6 QV+ 4@GbIJC-7eI5C(4&+�.S,BA@C-7e1�I 4@GHG�M�A&G�/ + 4&GH12'*1�m	1�C-+ G�1�I $ +�)
7eG�ZiZ f3+�6�'F'*Mw7%GHGHlBA@12'*v04%IJG�GHZ G�,�f3$ '*)%+�M�deC^m	GbIJ+�Z`G�,�f +�GHG�6�, DF'*1�m	1�C ��+-,�'*.�/�+r/�'*lBGH.	�[IJC-+r7%GHGH6�,B.3G�1�IJ+-'

� QV.�+^D*vB'gQV.
i
7eGH1�A@6�I 7%C-Z IJC�I(45'*Z IJ7e+^7%Q /�'*.�A@Z 4@GH/�GHlBC^'*1�Q �if34%IJZt$ m��HA@'�GHC�'*ZiI57%. G�,wD*G�Q

−Ti +
N
∑

k=1

TΣ,k

,BOc'*C�+ M�IJQNfwY 7%'*GH1�A@6�I5+�Z ftZ I D*+�GH7&'*M�+�lB+�Z:4@QN7%+�.tIJQNM�CL.�Ic'*6 C-+ deZiv�+ 7eZ[.�AhDgC�)-7%Q m	lBG�GHC
Ti
M�IJQNf

'*ZiG�QV'�7%'*GH1�A@6"IJ+�M�v�OJCL7eQkm	lBG�GHC
N
Y .�M�C�Z:'*1�'*lBM�.�I +�6�'F'*M�+ 7eGHG�lBA&12'*v 7%Qk7%.�M�C-CLM�I5Qr+�QVlBA@+�+�7eQkM�6�'*.

+�G�+ 7%'*M�+�lB+ D*7%'*Q MB'*.�/ '*Z�Y deZiv�+h7eQ 7eZi."A&C
k
7eG�1�A@6�I +�7eG�GH+S'g. IJQVM�CS.�IJ'*6 C�+SD*C�)�+h7eQ m	lBGHG�C

TΣ,k

A@M�QVZiA GHM�A@G�' �N45'*Z IJ7 4&IJ.3+�)%45'*Z IJ7 4@GH1�f�C^'*1�Q_$
g

∑

= −
∑N

k=1 Tk
+�6�'*'*M�+E7eG�GHlBA@1�'*v;7eQh.�M�C�C^,BOc'*C-+

� GHM�C-7e+ A@Zi6 $ G�'*lBG�vB' � G�M�C-7eCj.�f�MB'*CjQ\'*+('*ZiGHQNfhC �bm	A5'J45'*Z IJ7U7%Q 7&'*QNM�Z^D*7eGH1h$ C �bm	A5'����b."6�MB'*C(OJ."'*M�m
+�G�lBA&12'*v�+hGHv Z[/ .�Ic'*6 C-+Sd\Z[v�+h7eZ[.�A D*C-)cD*G�.LI5M�v�+�+_Zi/ +�lBv�C_G�'*lBG�v�+SA&Zi6 $ GHMB'*A@C-+hm �bA5'\45'*Z IJ7eZ3+-+�)

$
g

∑

+�G�lBA&12'*v�+k7%Q .�M�C�C^,BOc'*C-+^+�GH+r'*Z`.�Ic'*6�C�+kdeZiv�+r7eZi."A D*C-)&DgG�.�Z`Y ."M�C�C^Dgf�Qh,BOc'*C-+�I
M�lBA?+-,�'g."/EZ I G�7eC-QV+j+�f�MB'*QsGHf M�."7eOJCj4@Q � QV.�+(D*v�'*QV._4&G�A&G�1�)�C '*1�Q 7&'F,�'*.�/�._+�deGHZ IJ+jGHZifh7eQ
$ M�7%'*G�45,BA5'gC / lB."7e+�Z ,�.�/�C '*7%'*QVZ 7&'g1�G�7eC-C�+L7%'F,�'*."/ Z M�IJv�QVZ G�,Bf��H+�M�GHmnO���GHZif�+�Zi/�v�'*CEY M�+�l�'*C�+L+�f�MB'*QVC
'*Q �b+-GHGH6�, �54&G�Z f�+_D*C_,B6 Q Zi/�vB'*C Y M�+�l�'*C-+_+�f�M�'*QVC M�7%'*G � '*M�Q +-,�'*.�/�Z I G�7eC-QV+S+�f�M�'*Q Gbf M�."7eOJC_4&Q
Z I +�f�MB'*QSZ[/wA&G�'F,BC-.�+�M�GH+�lB+E7eGH1�A@6�I5+EGbf3M�."7eOJCE4&Q $ 4@+�G�1�I(QVZ � Q Y 7ef�M�/�C-.L4@GHGHA@+kG�vwZi/3Y �H+�1�deA&+ �
Y D*1�f�'*7\IUG�v f�C 45,BA5'gC +�Zi6 + 7eC�Q 7eM�."'F,r7eG�1�A@6�I Z I?+�7%,�'*."/L4@QNI �ifhY �b+-C�,BA@+ �JGHZif�+_Zi/�v�'*C(Y +-,�'*."/ +

$ �[f�C^7%'*1�+�G�Z`QVGH+k+�Z 'gf�G
� DF'*1�m	1�C-+0Z I � GHM�C-7%+07%'*C-G�QN7 7eC-lB/ QV'*+wDF'gIJQVMB'�IJQNM0$ 4@GH12'*GHM�deGHM�ALM�v�OJC;ZiI^4@M�'*QVZ 4@GH1�6 .�1�'*ZiQ 4&G�12'*1�mn1�C
G�'F'gIJ. A@M QNG�+�IE'*Q 7\deZ 'gIE+-GHm2deM�deOJQ QVGH+3Y 7eG�ZiZ f +-6 'F'*M:7%GHGHlBA@12'*v 4&IJGHGHCw,�Oc'gC�+�Ih,�'*/�.0Y 7eC-Q 7eM�GHC�Q34@QN+
7%'*G�m2deM�deOJQN+ ,Bm	1�f0+�.0d%'*A@1�Z 7eGH1�A@6"IJZ GHQ\,�f04@Q^,B.�/�G�,B.;Z[A%IJC G�'F'gIJ.w7eQVlBC-1\+�GHm	deM deOJQ ��,B.�/�G�,�.;ZiA%IJC
7eG�GHlBA@1�'*vk4&IJGHGHC +�GHG�6 ,�+ DF'*1�mn1�C � D*+�Z I 7%'F,�'*.�/�+ Z I D*+-Gbf�MB'*QV. 7%'*Zi7 QNZ[Z^Y 7&'*GH1�A&6�IJ+ M�QNI 7&'gdeA@'*1 D*+�.

$,B.�/�G�,B. ZiA%IJC^G�'F'gIJ. +�C-I5G�GHCr+-1�d\A@+�+rDF'*1�m	1�C�Ij,�'*/�.LY 7%'gdeZ['gI(7%'*G�m2deM deOJQV.37eG�ZiZ f3+�6�'F'*M
Dgf�M�/[I +-ZiQNfkY 7%'*GHM�Z['*mnM3+�6�'F'*M�7%'*GHlBA@12'gv3MB'*."/ $ 4@GHCN'*Z IJ7e+h7e/�GH.�AjD*vB'gQV.LA@M3D*."'*C�f�G�'*Zi7 ."GHlBA@7e+EDF'*)�GHQ
,BOc'*C�+ Zi/:D*GHQ Gbf /�'*.�A@Z D*7eG�1�Y +-/�'*."Ar7eM�7%'*1-7%'*M�6 QN+3Z IS'*ZiGHQ\'�+�Z[,�m�7%'*G�1�A@6�IJ+w7%6�QLZ I +�7%Zi/�'g7^M�IJQ�f Z[,Bm

$ DF'*1�mn1�C�+k7eQh4&G�GHA@Z G�,�f � O5f3/ G�A%IJ+�Z

xi

D*CE/�C-7eI5C�+hD*C M�7&'*G%4@GHM�6�'*QNCS'*GH+-GeQVZtdeZiv�+E7%Zi.�A GH1�C�)&Gbf�'*.L6�de."'*C � D*mn'*+ DF'*1�m	1�CEQ\'g+ +�G�GH6�,B+ DF'*1�m	1�C
$ +�)�f3'*1�GHQ +�1�deA@+�+rDF'*1�mn1�C^$ 7eG�7eZi6 7e+�+E+�QVlBA@+�+

+�G�GH6�,B+�DF'*1�m	1�Ck$ Ziv�deZ Z[mn'*OJC�Q\'*+�+�.t+�,�'*.�/�+�7%'*C�f0Zi/ +�Zi."m	C�Z ft.�G�lBC3Q\'*+LD*GHQ
� 4@Zi7eOJCL+�1�deA@+�+ DF'*1�m	1�C
+�f�'*M�Q D*7&,�'*.�/ I '*Q �N4&G�'gOJC � OJZtM�."/ Ch'*M�A&GbI5I 7%'*G�1�A@6�I(+-GHv�Zt7&'*GH1�G�,BC /�'*.�A@Z0,�Oc'*C-+ 7eQ_.�GHG�6 CE'*7eCN'*/ Z

$ ZiZ f�'*/ l�'*."G\QVZ`D*+-GH7%'F,�'*."/[I �if�.3IJ1�/�+�Zt7%'*.�G�GH6 M�6 Q � OJC
Y 7%'*/�'*.�AS7%'*)�M�f�+�MB'*."/tY 7eGH1�A@6"I_ZiI 7eZi/�'*7e+ 7eG�GHlBA@1�'*v 7%'*v�G�lBM`QNG�+�DF'*1�m	1�C�Z I DF'*6�de.;GHZ['gI ZiI 4&7&'g/�C�IJC
7%'*."GbIJ6 IJGVDF'*6�de. GHZ 'gI5Z0$ +�7eM�+�lB+�CE+�12'gI 7eG�1�A&6�I +�7%'*Q Z I +-,�'*."/ +rZ I G�7eC-QV+k+�f�MB'*Q GbfwM�."7eOJCkM�IJQNf
DF'*1�m	1�C-Z $ D*+-ZL+�Ic'*MB,B+ +�,�'*.�/�+ 7%'*C�fh7%'F,�'*QsA&G�'F,BC GH7eZ[. /�,BGHC�. 7&'*A&G�)�6 CjD*C-lB/r7%'*GH1�A@6"IJ+ M�I5QNfh+�."'*M�C
+-,�'*."/ + Z I +�f�MB'*Q M�IJQNf � GHlBMrGH7eZ[.hD*vB'*QN.h7e/�m	v�1 7eG�1�A@6�IJ+ 7eZ[/�'*7\I DF'F'*GHf�Cj,B6 Q ,�lBC 4&G�GHZ['gI +-GHGH6�,B+

$ 4&G�M�.�/�+kGH1�IJC^DF'*6"de. GHZ['gI('*7eCN'*/ Z0+�1�deA&+-+kDF'*1�m	1�C�Z $ M�+�l�'*C�+^Zi/0+-Z['*/
4@GH/�l�'*C-+ 4&G�1�'*1�m	1�C�+ GH.�m:Zi/r7%'*1�."ZL7eM�IJv�QVC('*) +-,�."'*/ $ IJQVM�C(4@GH/�'F,BG '*) 4&G�12'*1�mn1�C 7e6 v�IJC-.S4@GHM�G�6�C�+
$ G�,�C(+-'*.�m IJMB,B1�+j45'*Z IJ7e+ Gbf_D*7%'*QVM�. A@6"IJC-+ D*CjMB'gIJ1�Zr7%'*G�1�A@6�IJZkM�IJv�QVG M�IJQ Y GH.�ZiIcR	'F, Y Ic,B6 DF'*1�m	1�C
ZiA&IJCLG�'F'gIJ.w+�GHm2deM�deOJQ\'�Y �b+-GHGH6�, �H+�OJOc'*."CLGH."Z I R2'F,B+ DF'*1�m	1�C-.07\deZ['gI +-GHm2deM�deOJQk+�GH+�7 7eC-Qr7%M�G�C-QNI G�,�f
M�IJQ�f^deZiv�+ 7eZ[.�A D*C-)X7eGHG�6�,rZ IUIJ12'*/ 7eZi/�v�+�. �[MB'*lrIJG Y �H+�1�deA&+ �H+ OJOc'*.�C G�.�Z I R2'F,B+ DF'*1�m	1�C�.^,B."/ G�,B.
G�'*Z[7e+j4@M�'*m QVZiQ Y IJQVM�C(/ ."A&1�+ M�v�OJC(,�'*/^+�1�G�Q +�GHG�6�,B+ 7%,BG�C $ GH."Z I R2'F,B+ DF'*1�m	1�C-.S'*+�IJZ f_M�A%I +�Zim	7%C
$ +�M�A@GbI5I 7eG�1�A&6�IJ+ Z I +-,�'*.�/�+ ZiI GH7%C-QV+ +�f�MB'*Q Zi/ � C-7%OJ+�.h7eGH.�deGHC +�QVlBA@+ 7eM�G�6�. ZiI 4@GH."'gIJG�6�.

$ �H7%'F,�'F.�/�.�+�deGHZiI GHZ f �VMB,Bm	C^GH."Z Ij'F,B+^DF'*1�m	1�C-. +�I5G�1�/ +r7eZ['*/�v 7eQ QVGHl�'*C^+-) � MB'*l
,BOc'*C�+SZ I 7%Zi/�'*7%+ 7eGHG�lBA&12'*v�4&mXQVZiQ(Y ,BOc'*C�+S7%M�G�6 .k.�GHdeZw,�,BC_A@M +-1�G�Q +-6 'F'*M�+ 7eG�GHlBA&12'*v�I DF'F'*GHf�C
$ +�7eM�+�lB+-.� 7eM�A%IJC '*Q �X+�/�'gd 7%'*GH1�A@6�I5+sDgC M�7%'*G '*QU7e6 QUM�I5QNf 4&m`+�f�M�/ ZE7%'*/�C�IJCsIJGbI G�M�+UY '*C-lB/
4@GbIc'*/ + 4&G�1�'*1�m	1�ChY ZiI5C�Z $ 4@GHM�6 QSM�IJQVCh'*)@+�1�GH6 .�CEM�7%'*G%4@GH.�'gd_7e/ l�'*C�+ +�6 v�IJC-+ � '*7e. 4&G�C-G�'*OJCE4@GH12'*1�m	1�C
4@GH1�GbdeA@CEM IJQ '*ZiQ 4&G�v�G�,B/�Y �b+�1�deA@+ �%G�Z f�+ 7eC�lB/3Z I � G�lBM36�'F'gd � '*7%C $ �b+-C�,BA@+ �H' �H+�M�GHm	O��&4&G�Z f�.�Ic'*C-GHI
7eA@OJvB'*Ch'*Z0M�.�/�CEM�IJQ_M�A&IJ+ � OJ.�M�GbIJGeM�IJA&.�MB'gIJA �H+�GHG�6 , �eGHZ f�+E7eC�lB/w6�'F'gd $,B.�/�C-+E7%C-lB/ 7eQ_7%'*6 v
�[I5C�+^7eQh4@GH6�'F, M�IJQh4@GH12'*1�m	1�Cr4&G�v�G�,B/wY /�'*."A � OjMB'*.�/ $ 7eI5MB,B1�+E+-,�'*."/ +^7&'*C�f � OJ. '*Q Y D*GHd%'*Zi6 Z`+-,�'*."/ +

$ M�IJv�QV+^Z fBf345,BA@'*CED*C-)�Z +-,�'*."/ +
'*1�/ lB+�I D*vB'*QV.�7%'F,�'*."/ . +�deGHZiI5+EGHZif 7eZi/�v�+ $ M�7%'*GHCS'*1�GHQS4&G�/ G�lBCE'*1�QNI 4&G�1�'*1�m	1�C�+rGHA@Zi6 G�1�IJC ,B6 Q � Q
7%'*G�1�A@6�IJ+ Z fE4&Q � QsY 4@GHC�G�'*OJC 4&G�.�lBC-.^7eGHQ\,�fEGH7eZ[.^7&'*GH+�Z�7eC�Qj7eM�GHC�QVZ 45'*M�m	GJ4@GHCN'*Z IJ7 7eZi."AsQNZ[Z
IJQVM�CE/�.�A@1�I Z f3QVZiQ_Y ZiZ f 4&G�Zi/ vB'*CE4&1�GHQ +�deGHZ IjGHZif M�I5QNf m��bA5'-G�C�'*Z IJ7 7eM�.�/�+E$ 7eC-QS7%'*M�."'F,37%'*M�6 QV+

$ 7%'*QVl�'*7 D*7%'*QVZ`QVG�+ � Q QVG�.�7 Y ,B.�/�CrZif Zi/;D*/�'*lBGH.3MB,BOc'�4@GH12'gIJ+k4@G�,�.�/�C-Z 7%'F,�'g."/ +E7eA5'*Zi6 Q\'*+

xii

